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PREFACE 

HE fortunate organization of higher studies in 
the University of Neuchatel } has, for many 
years, given M. Arnold Reymond the oppor- 

tunity of teaching the history of science in a course 
followed both by the students of the Faculté des Lettres 
and those of the Faculté des Sciences. That portion of 
this course which relates to antiquity is the subject of 
the present publication. Its merits are so apparent 
and so real that it would be superfluous to insist upon 
them. 

From the first pages of the book it can be seen with 
what skill M. Reymond has extricated himself from 
the learned controversies which the historian must 
have mastered in order to arrive at truths so deeply 
hidden to-day; with what honesty in his references, 
with what certainty in his choice of details, he retains, 
in the most simple and clear manner, whatever can 
effectively give the reader food for thought and help 
him to revive in all its depth and integrity that ancient 
Western civilization, the perspective of which is often 
spoiled and distorted by a purely literary tradition. 

_ Many great names in the realm of science are also 
SA rcat names in philosophy. However, there is ground 
for distinction between work of a purely scientific order 
»and speculations having a universal bearing. M. 
“Reymond has striven to define the distinction and to 
keep as much as possible within the philosophic limit, 
so that his book, far from covering the same ground as 

1 And now at the University of Lausanne. 
MA 
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classical studies on ancient philosophy, particularly the 
excellent work of my colleague and friend, M. Léon 
Robin, La Pensée Grecque, may serve as an introduction 
to them. But, at the same time, being both a philoso- 
pher and a man of science, he has been able to place 
the technical exposition in the atmosphere best adapted 
to put in relief the tendency of Hellenic science, the 
curve of its growth, and its destiny. 

The achievements of science are not to be confused 
with its field. The latter comprises all the questions 
studied by men who are called men of science, whilst 
the former comprises only those problems which they 
have succeeded in solving. The achievements of 
Greek science are extremely limited compared with the 
field which the savants of antiquity have explored. 
But within these limits the human mind did reach the 
exactitude of demonstration; it gave to truth the 
characteristics of certainty and security without which 
the appeal to truth is nothing but a mask for idleness 
or presumption. As M. Reymond remarks, the pre- 
tension to universal infallibility could easily find satis- 
faction in the primitive mentality which attributes 
the apparent inconsistency of natural phenomena to 
the fundamental caprice of invisible powers. It is 
quite another kind of infallibility that the Hellenic 
genius has apprehended, when it has established the 
methodology of mathematical proof. 

The success of this methodology was not without its 
drawback. With it came an intricate connection 
between logic and mathematics, which was only broken 
by the Cartesian philosophy. This solidarity, to which 
we owe two masterpieces, the Analytics of Aristotle 
and the Elements of Euclid, made Greek science timid 
in face of its own conquests. As M. Reymond rightly 
insists, the illusory shadow of Zeno of Elea must have 
weighed upon the genius of Archimedes and prevented 
him from giving to the intellectual treatment of the 
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infinite the positive evidence and practical fecundity 
which we to-day know that it implied. 

On the other hand, the astronomy of position, a 
science which is purely mathematical, is subordinated 
to an astrology which seemed explanatory because it 
entirely filled the frames prepared by the verbalism 
of the Aristotelian categories. 

Ancient science has in this way missed the very 
thing which, to us, seems the essential condition of 
knowledge, the connection between the mathematical 
and the physical, between calculation and experiment. 
On that depend twenty centuries of history. Rome 
remained totally indifferent to the purely disinterested 
speculative spirit which the followers of Pythagoras 
and Plato carried to its highest expression in mathe- 
matical research. She deliberately circumscribed the 
horizon of science by her anxiety for immediate utility, 
as is shown by an almost tragic statement by Cicero, 
quoted by M. Reymond. The spiritual decadence 
linked to the triumph of Roman imperialism, only 
ended with the Renaissance, when Hellenizing savants 
re-opened the book of exact Science at the page where 
the Greeks of Syracuse and Alexandria had left it 
unfinished. 

Such considerations show clearly the utility of a work 
as skilfully adapted to its object as this which we have 
the honour of presenting to the public. Thanks to 
it, our men of letters will have the means of com- 
pleting and rectifying their knowledge of antiquity, 
supporting it by an understanding of the mental sub- 
structure which will enable them at last to appreciate 
the order and solidity of the whole edifice. But it is 
addressed also to our young men of science. From 
lack of official institutions in harmony with a general 
survey of human knowledge, they are, for the most 
part, left in ignorance of the history of science, incap- 
able of following the way opened up by our com- 
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patriots: Paul Tannery, Pierre Duhem, Gaston 
Milhaud, Pierre Boutroux, whose admirable works are 
so often recalled to mind by M. Reymond. The study 
of the Past seems to be left to lovers of phrases, to 
devotees of the Verbum oratio who can only conceive 
a superficial and almost grotesque representation of 
human nature, but whose influence, preponderant in 
assemblies which are governed by words, directs our 
education in a way contrary to the needs of our civiliza- 
tion and our country. The present generation suffers 
cruelly for not having listened to Pierre Curie beseech- 
ing that the teaching of science should be the principal 
teaching im schools for boys and girls.+ 

Better informed by their own history, the future 
representatives of Science will understand, and will 
make those around them understand, that those alone 
whose works witness to the sincerity of their attach- 
ment to the Verbum ratio are the lawful heirs of the 
Hellenic wisdom in its true and most truly beautiful 
form. 

LEON BRUNSCHVICG 

' Pierre Curie, by Madame Curie. Paris, Payot, 1924, p. 98. 
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HISTORY OF THE SCIENCES 
IN GRECO-ROMAN 

ANTIQUITY 

INTRODUCTION 

EGYPT AND CHALDEA 

r: AHE information which ancient Greece has left 
us concerning the scientific knowledge of 
Oriental nations amounts to little. The 

traditions reported by Herodotus, Diodorus of Sicily 
and Strabo remain fragmentary and open to doubt.! 
The same remark applies to the explanations which 
geometers, such as Proclus, attempt to give in order to 
determine the contribution of these nations to the 
various branches of science. Information more direct 
and more reliable has been supplied in the nineteenth 
century by archeology and the methodical study of 
monuments. 

The drawings and paintings which appear on the 
walls of temples or of tombs are valuable evidence. 
These drawings teach us that the Egyptians knew, for 
example, a practical method of drawing a hexagon, 
but not a pentagon. The unfinished decoration of 
a funeral chamber reveals an application, equally prac- 
tical, of proportions and of similitude. The wall to 

1G, Jéquier, Histoive de la civilisation égyptienne, 2nd edi- 
tion, Payot, Paris, 1923, with a systematic bibliography of 
the principal works on Egyptology. 

1 
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be decorated and the image-model which is depicted on 
it, are in fact divided by parallel lines into the same 
number of squares and in each square of the wall are 
reproduced the forms and colours in the corresponding 
square of the image-model.! Finally the shape, aspect 
and construction of monuments such as the pyramids 
bear witness to a fairly precise practical knowledge of 
geometry, mechanics and astronomy. As to the infor- 
mation furnished by hieroglyphics and cuneiforms, it 
amounts to little. The only document of any impor- 
tance is a manual of calculation, whose author is the 
scribe Ahmes, and which was probably written between 
the years 1700 and 1750 B.c.? 

Thus, seeing the paucity of information available, we 
are reduced for the most part to conjectures concerning 
the scientific knowledge of the Egyptians and Chaldeans. 
What is certain at all events is that their knowledge was 
always dominated by needs of a practical or religious 
order. 

1. THE MATHEMATICAL SCIENCES 

Theoretical arithmetic was little developed amongst 
the Egyptians, as amongst the Chaldeans. 

In practice and for reckoning they made use of 
abacuses the arrangement of which calls to mind the 
ball-frame formerly used in infants’ schools. As a 

129 Zeuthen, Histoive des mathématiques, p. 5. 
This document (Rhind papyrus of the British Museum) 

has been translated into German and studied by A. Eisenlohr : 
Ein mathematisches Handbuch dey Alten Aegypter, 2 vols., 
Leipzig, 1877. Cf. 22 Milhaud, Nouvelles Etudes, p. 58. 
A recent and more profound study of this document has been 
made by T. Eric Peet: The Rhind Mathematical Papyrus, 
The University Press of Liverpool, Hodder & Stoughton, 
London, (See Isis, v1, p. 553-7.) There exists in Moscow, 
if it has not been destroyed in these latter years, another 
important geometrical papyrus which has not yet been studied, 
and of which no one possesses a copy. 

823 Rouse Ball, History of Mathematics, 1, pp. 3 and 132. 
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written numeration, the Egyptians used the following 
system. A special sign represented unity, another sign 
represented ten, and so on. - So that, if one had to 
write the figure 23, it was necessary to repeat three 
times the sign for unity and twice that for ten.1 This 
proceeding made writings singularly complicated. It 
was the more inconvenient because the Egyptians had 
not our abbreviated methods of multiplication and 
division. For them multiplication was reduced to a 
series of additions, and division to repeated subtrac- 
tions. A further cause of complication in the calcula- 
tions arose from the manner in which the fractions were 
considered. The idea of a fraction must have been 
evolved in the mind of man ata very early period. It 
was imposed upon him as soon as he knew how to 
measure a field, for it rarely happens that the unit 
chosen as a measure is contained an exact number of 
times in material objects. This being so, the idea of a 
simple fraction can be conceived in two ways. One 
may proceed as we do. In this case, the unit is under- 
stood in the denominator which indicates the number 
of subdivisions into which it is divided, while the 
numerator shows the sum of the parts thus obtained 
which one wishes to consider. To write +, for example, 
is to say that of the seven subdivisions of the unit, one 
only considers the sum of four of them. This being so, 
to add or subtract two different fractions does not pre- 
sent any difficulty. It is enough to reduce these 
fractions to the same denominator, i.e. to the same 
divisor of the unit, then to add or subtract the numera- 
tors and the problem is solved. But it is possible, and 
this is what the Egyptians did, to consider the fraction 
as always representing a part of the same unit. In this 
case the fractions will always have 1 for numerator, 
the denominator indicating as before the number of 
parts into which the unit is divided. Hence what we 

122 Milhaud, Nouvelles Etudes, p. 51. 
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express as a simple fraction, +5 for example, appeared 
to the Egyptians as a problem, viz., to what sum of 
fractions of the unit is the division of 2 by 29 equal ? 
They showed that the sum was equal to zy + 35+ rz 
+ 34z. 
When the number to divide was greater than 2, e.g. 

gs, the Egyptians resolved it in the following manner : 

Ha te tis +H. 

Replacing 3% by the value found above, one obtains 
finally after simplification : 

vmetettartehetae th. 

The manual of the scribe Ahmes gives a table of reduc- 
tion for all fractions having 2 as numerator, and the 

2 

an +1 
(where » may have any value from 1 to 49).1_ By what 
process has it been possible to compile thistable? This 
is difficult to say, owing to want of information on this 
point. According to M. Zeuthen the operation was 
originally purely empirical, as follows: ? Given the 
fraction ?, we represent the numerator by the length 
a b (Fig. 1), and the denominator by the length a c. 

odd numbers from 3 to 99 as denominator ; i.e. 

HIG Es 

Now, let us take a cord, equal in length toa c, which we 
can fold in such a way as to get one-half, one-third, etc., 
of its length. If we mark off on ac half of this cord, we 
reach a point beyond 3, if we take one-third, we fall short 
of b, at the point d. There still remains a length d 3, 
which, marked off 15 times, is equal to the whole length 

19 Cantor, Geschichte der Math., 1, p. 25. 
230 Zeuthen, Math. Wissensch., p. B 19. 
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ofthe cord. Then? =4+ 75. Itis, however, open to 
question whether this process always leads to the exact 
results given us by the table of reduction. However 
that may be, the practice of expressing fractional 
quantities by a sum of fractions all having unity as 
numerator, persisted amongst the Greeks until the 
sixth century of our era. This practice, besides, 
facilitated the treatment of certain problems which, 
for us, lead to the solution of a numerical equation. 
Such is the following, propounded by Ahmes: To find 
a number, which, increased by its seventh, is equal to 
19. The answer given: 16 +4 + 4 is accurate.! 

The tablets of Senkereh, discovered in 1854 in the 
library of Sardanapalus IV, give undeniable proof that 
the Chaldeans, besides the decimal system, used an 
advanced sexagesimal system based on the principle of 
the position value of figures.? 

These tablets, taking sixty as unit base, give us a list 
of squares and cubes of which the following is an 
example : 

1-4 (ie. 60 + 4) is the square of 8. 
I-21 (i.e. 60 + 21) is the square of 9. 

More recent inscriptions even show an empty space and 
sometimes a special sign representing zero, when that is 
necessary.2 The positional notation which charac- 
terizes our arithmetic was thus clearly known by the 
Chaldeans, and it is very curious, seeing its practical 
advantages, that it did not pass into Greco-Roman 
science. 
How were the Chaldeans led to choose the sexagesimal 

division as well as the decimal system? 4 Is it because 
they originally divided the year into 360 days? Or did 

129 Zeuthen, Histoive des mathématiques, p. 8.—6 Boyer, 
Histotve des mathématiques, p. 4. 

222 Milhaud, Nouvelles Etudes, p. 54. 
830 Zeuthen, Math. Wissensch., p. B 12. 

SOs Diwe 13. 
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they desire to have as a fundamental number, the num- 

ber 2.3.5 which is divisible by the majority of small 

numbers in constant use? Or again, is it because the 

hexagon, inscribed in a circle, divides it into six equal 

parts ? 1 . 
It is very difficult to decide between these various 

hypotheses. 
It will be seen that our knowledge of the arithmetic 

of the Oriental nations is very small; the same is true 
concerning their geometry. According to the accepted 
tradition of Greek writers,? this science owed its birth 
to purely practical needs. It was the overflowing of 
the Nile which led the Egyptians to think of geometry, 
for, as soon as the inundations were over, they 

endeavoured to restore to each cultivator the 
boundaries of his fields. Hence the necessity for an 
exact survey. The formule used were, however, 
empirical, and were far from being always accurate. 
For example, to estimate the surface of a quadrilateral, 
the Egyptians did not attempt more than finding the 
product of half the sum of the opposite sides ; in order 
to calculate the area of a circle they used a value of z 
equal to 3:1604 instead of 3-1415.... They knew, 
however, that if the sides of a triangle are respectively 
5, 4, 3, it is a right-angled triangle, and they made use 
of this property to erect in the field a perpendicular 
to a straight line. For this purpose, they used a cord 
divided by two knots into lengths equal to 5, 4, and 3; 
by means of pegs they made the length 4 coincide 
with the straight line at the extremity of which the 
perpendicular had to be erected (Fig. 2), then keeping 
taut the lengths 5 and 3, they brought them together 
in such a way as to join the ends.3 

It is for this reason that the Egyptian geometricians 

129 Zeuthen, Histoive des mathématiques, p. 7. 
* Proclus, Com. Euclid, 1, p. 64, 18. 
$22 Milhaud, Nowvelles Etudes, p. 66. 
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were called harpedonapta, which signifies rope- 
stretchers.1 It would appear also that the Egyptians, 
as well as the Hindoos, had dis- 
covered, before Pythagoras, the iN 
relation between the surfaces | ~s 
of squares constructed on the j ‘e 
sides of a right-angled triangle. ! oe 
However, the demonstration | oe 
which they gave of this relation YEO iS rae 
must have been purely intuitive 
and empirical : it probably con- 
sisted in dividing the squares so constructed into small 
squares, all equal, and showing the equality of the sums: 

yy 

~ 

Fic. 2. 

25 = 16 +9(Fig. 3). This demonstration is not appli- 
cable to any right-angled triangle whatever; it neces- 

1 Clement of Alexandria, edit. Pottier, p. 357. 
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sarily supposed the sides of the triangle to be in a cer- 

tain proportion of whole numbers, 3, 4, 5s for example. 

It may be asked whether the construction of the pyra- 

mids and temples did not require more advanced 

theoretical knowledge than that which we attribute 

to the Egyptians. M. Milhaud has clearly shown 
that this was not the case.? 

Whilst the Egyptians were ignorant of the art of 
calculating an angle, this was the branch of mathe- 
matics which above all interested the Chaldeans. For 
them, indeed, the position and movements of the 
heavenly bodies (especially the planets) had a vital 
interest, since this movement influenced the destinies 
both of nations and individuals. So it was necessary 
to know how to measure exactly, at every instant, the 

relative positions of the planets and stars, which is 
impossible without the help of angles and their pro- 
perties. To measure the magnitude of angles the 
Chaldeans, as we have seen, conceived the brilliant idea 
of dividing the circumference into 360 parts, Hence- 
forward, to estimate the height of a star in the sky, it 
was sufficient to fix, perpendicularly to a horizontal 
plane, the quarter of a graduated circumference 
furnished with a mobile radial arm. In sighting the 
star by means of this radial arm, an angular displace- 
ment would be found, which corresponded to the 
height required. It is a curious fact, that, as we shall 
see, the Chaldeans had recourse to quite different 
methods to determine the positions of the stars. The 
lack of trigonometry did not impel astronomers to the 
direct measurement of angles.® 

To sum up, the characteristics which distinguish 
Egyptian mathematics from Chaldean mathematics 
correspond to a difference in the practical uses to which 

122 Milhaud, Nouvelles Etudes, Pp. 108. 
2 Ibid., p. 75 et seq. 
$2 Bigourdan, Astronomie, p. 107. 
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this science was put. The same distinctive feature 
appears again in astronomy. 

2. THE ASTRONOMICAL SCIENCES 

In connection with the annual risings of the Nile, the 
Egyptians attached great importance to the exact 
determination of the periodic return of the seasons, 
and the religious festivals held in its celebration ; and 
their observations relating to the measurement of time 
were far advanced. 

As far back as we go in the history of Egypt, we see 
that the year was always divided into 12 months of 30 
days each, plus 5 supplementary days; but it is prob- 
able that originally the year had only 360 days, if the 
following tradition, reported by Plutarch, is to be be- 
lieved: Saturn having secretly wedded Rhea, the 
Sun forbade her to give birth either during the course 
of a month or of a year. Hermes, the devoted servant 
of the goddess, played at dice with the Moon and gained 
from her the 72nd part of each day; thus a total of 
5 supplementary days was provided during which Rhea 
might bring her child into the world. 

The Egyptians had therefore ascertained, at a very 
remote epoch, that the period of 360 days for a year is 

too short. They recognized also that 365 days is not 
enough, and must be extended to 3654 days. For if 
once the sun rose at the same time as Sirius on the 
first day of the year, the following year at the same 
period, Sirius would rise six hours later than the sun, 
and at the end of four years one day later. Thus, 
there would have to be 365 x 4 = 1,460 years before 
the risings of the sun and Sirius coincided again on the 
first day of the year. This period of 1,460 years is the 
celebrated Sothiac period (Sothis being the Egyptian 
name for Sirius) which regulated the celebration of 

1 De Iside et Osivide, ch. 22 (18 Maspero, Histoire Ancienne, 
p. 80). 
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great religious festivals. The precision of these calcu- 

lations may appear surprising at first sight, but they 

can be made with very simple instruments.* _ 

Whilst the Egyptians were chiefly interested in the 
movement of the sun, the Chaldeans studied carefully 

the movements of the planets, believing human destinies 
to be bound up with these mysterious movements. 
Favoured by exceptional atmospheric conditions, they 
extended their observations very far. They quickly 
recognized that the planets, the sun and the moon move 
across practically the same region of the heavens, i.e. 
the zodiac or plane of the ecliptic. Therefore ‘‘as a 
result of their astrological ideas, the Chaldeans, instead 
of referring the positions of the stars or of the planets 
to the equator, have referred them to the mean circle 
of the zodiac, and this circumstance has been of great 
historical importance, because, when the Greeks 
inherited the Chaldean science, Hipparchus could 
thereby discover the precession of the equinoxes. It is 
clear that, if the system of co-ordinates by right 
ascensions and declinations had then prevailed, the 
complex law of the variations of these co-ordinates 
could not have been discovered.” ? It is well known 
that, by virtue of the precession, everything takes place 
as if the axis of the earth described a cone of revolution, 
and took a period of 26,000 years to describe it. The 
result of this is that the North Pole slowly changes 
its position in the sky, and that each year the plane of 
the equator cuts that of the ecliptic at a point slightly 
different from that at which it cut it the preceding 
year at the same time of the year.2 The Greeks, 

122 Milhaud, Nouvelles Etudes, p. 89. 
*Paul Tannery, La Grande Encyclopédie, article: As- 

tvonomtie. 
*The following fact illustrates this progressive displace- 

ment. Ifthe Ram occupies the foremost place in the nomen- 
clature of our zodiacal signs, it is because, at the time when 
these were depicted, the sun was entering the constellation 
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moreover, did not deny having borrowed from the 
Chaldeans the idea of the zodiac and the animal con- 
figurations which divide it into 12 regions. “ They, 
themselves, acknowledged the fishes of the Euphrates 
in their sign of the Fishes. But, afterwards, they con- 

nected all these constellations with their national 
mythology, and thus made unrecognizable the original 
exotic characters which would have indicated their 
origin.” However this may be, it was by the use of 
the zodiacal circle that the Chaldean astronomers 
were able to predict with more or less exactitude 
the eclipses of the moon and of the sun. They 
noticed that the orbit described by the moon is 
slightly inclined to this circle, and cuts it at two 
points called nodes, or the head and tail of the 
dragon, because it is always at these two points that 
the eclipses of the sun or moon occur. By noting 
the position of these nodes with regard to the fixed 
stars, they were able to ascertain that these gradually 
moved along the zodiacal circle, and returned to their 
original position at the end of a certain cycle of 
lunations. 

Having noted the succession of eclipses which were 
produced during the cycle, it was possible for them to 
predict their return. It is probable, however, that a 
calculation of this kind does not belong to a period 
earlier than the second or third century B.c., and that, 
before that epoch, the Babylonians were ignorant of 
the so-called cycle of Saros. 

At first the prediction of the eclipses of the moon 
could be made by very simple methods, thanks to 
especially favourable circumstances, which return 

of the Ram at the spring equinox. Now, owing to the pre- 
cession of the equinoxes, it only arrives there in April. C. 
Flammarion, Initiation astronomique, Hachette, Paris, 1908, 

Pp. 147. 
12 Bigourdan, Astronomie, p. 21. 
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periodically in the course of centuries. From 755 to 

432 B.C. the eclipses succeeded one another in series 

alternately of 5 and 6. In each series the eclipses took 

place every six months, and the series were separated 

by an interval of 17 lunations.1 Thus it became 

possible to make predictions at short notice, which 

explains some of the inscriptions found on the cuneiform 

tablets. 
As to the instruments of observation, we have little 

information. The Chaldeans certainly made use of 
the.gnomon, which appears to be the most ancient 
instrument~used for studying the movements of the 
stars, for it is everywhere mentioned before all others, 
whether amongst the Chinese or the Chaldeans, the 
Greeks or the Incas. It is, besides, a marvellously 

simple instrument, composed of a vertical style stand- 
ing on a horizontal plane. By reproducing the move- 
ment of the sun, the extremity of the shadow pro- 
jected by the style makes the division of the day 
possible.? At first sight the precision of the observa- 
tions made by means of the gnomon would seem to 
increase with the length of the shadow, and therefore 
with that of the style; but in reality the shadow of 
the style is not very sharp because of the penumbra.3 
Further, as the length and even the direction of the 
shadow vary for the same hour on different days, it 

was necessary to have recourse to some sort of table, 
which gave for each month the length of the shadow at 
different hours. 

Later on, the gnomon with the vertical style was 
replaced by a gnomon with the style pointing towards 
the pole. It was then only necessary to observe the 

+2 Bigourdan, Astyvonomie, p. 34. 
*24 Sageret, Systéme, p. 95. 
°In order to remedy this disadvantage Facundus Novus 

had the idea of fixing a ball on the point of the gnomon. 
Pliny, xxxvi, 72. 
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direction of the shadow in order to conveniently reckon 
the time.t 

Besides the gnomon, the Chaldeans used the polos. 
The polos is a half sphere hollowed out in a block of 
stone or metal, at the bottom of which is fixed a style 
with its end reaching exactly to the centre of the 
sphere.? Hence the name oxdépn (boat) given by the 
Greeks to the polos. By this means an exact repre- 
sentation of the sun’s movement was obtained; ‘‘ the 
shadow of the point of the style moves in the interior 
of the polos as the sun moves in the heavens, in the 

same direction and with the same angular velocity at 
each instant ; it is only the sense of the motion which is 
reversed.” The hourly division of the time, repre- 
sented by the meridians of the hemisphere, remains 
the same for all periods of the year. The shadow, in its 
curved path, sweeps a zone in latitude, whose breadth 
corresponds to the difference between the shadows pro- 
jected at the summer and winter solstices. 

To measure time during the night the Chaldeans at 
first used the clepsydra, and it is probably by means of 
this instrument that they divided the zodiac into 12 
equal regions.* 

Later, by combining the polos with a kind of 
armillary sphere, they could verify their nocturnal 
measurements in the following manner:* Imagine an 
open-work sphere, made of strips of metal for instance, 
representing the celestial sphere, and more especially 
the zodiacal zone with its principal constellations, and 
let this sphere be constructed in such a manner that it 
can move within the polos and be exactly adjusted to 
it. Suppose the zodiac to be divided into 360 degrees, 

12 Bigourdan, Astronomie, p. 92 et seq. 
224 Sageret, Systéme, p. 106. 
3 Ibid. 
42 Bigourdan, Astronomie, p. 95. 
525 Tannery, Science helléne, p. 84. 
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according to the Babylonian custom, and that, on the 

night of the observation, the degree occupied by the 

sun at the instant of its setting be known. “‘ Then, if, 

at the moment of which it is desired to ascertain the 

time, the zodiacal stars on the eastern, western and 

southern horizons be observed, the stars represented 

on the sphere of the instrument can be brought into the 

same position ; the degree in which the sun is situated 
will then play exactly the same part as the shadow 
of the end of the style during the day, and its position 
with regard to the horary lines traced on the polos, 
gives the required time.” The Chaldeans thus suc- 
ceeded in solving, by mechanical means, problems for 
whose solution we have recourse to spherical 
trigonometry. 
By dint of patient observations and in spite of the 

imperfection of their instruments, they succeeded in 
accumulating a considerable number of data, amongst 
others ephemerides of the sun, moon, and principal 
planets. The tablets of Cambyses, for example, give 
a list of the conjunctions of the moon with five 
planets, and also a list of the conjunctions of the 
pianets with each other. The celebrated astronomer 
KipInNu had calculated the synodic lunar month with 
astonishing accuracy, to an error of 0-4 seconds 
(29 days 12 hours 44 minutes 3-3 seconds instead of 
2°9 seconds).? 

However, throughout all these splendid discoveries, 
the distinctive features of Chaldean astronomy persist ; 
being calculators and traders, the Chaldeans merely 
sought to draw up numerical tables which would meet 
their astronomical needs. They did not seek, as did the 
Greeks, to represent geometrically the real or apparent 
movements which explain the variable positions of the 
heavenly bodies on the celestial sphere. 

+2 Bigourdan, Astronomie, p. 217. 
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3. THE PHYSICAL AND NATURAL SCIENCES 

The technique of the manufacture of metals and even 
that of perfumes seems to have reached a remarkable 
stage of development among the Oriental peoples. 
The same may be said of medicine, at least, in one 

of its branches. For, amongst the Egyptians, the 
physician was required to perform two tasks of equal 
importance. He had, first of all, to discover the nature 
and if possible the name of the malevolent spirit which, 
by its intrusion into the body, had caused the malady ; 
then he had to attack it, drive it away, and even destroy 
it. ‘‘ He can only succeed in this by being a powerful 
magician, expert in exorcisms, skilful in manufacturing 
amulets. Then, with his drugs, he must fight the dis- 
orders which the presence of a strange being produces 
in the body ; it is a question of régime and of carefully 
graduated remedies.’’! In the treatment of diseases, 
magic and incantations play therefore the principal 
part. 

As to medicines, they were of four kinds: ointments, 
potions, poultices and injections. They were composed 
of a large number of various natural products.? Most 
of these remedies were believed to have a divine origin. 
The Egyptian physicians, the majority of whom be- 
longed to the priestly caste, also used prescriptions 
borrowed from the Phcenicians and Syrians, or collected 

during their personal practice. In this manner, the 
experience gained was never lost and the treasure of 
medical science increased from generation to generation. 

The whole of this medical knowledge is not to be 
discarded ; for instance, modern science has shown that 
remedies composed of excrements contain ammonia, 
and can be advantageously used in certain diseases. 
Nevertheless in Egyptian or Chaldean medical science, 

119 Maspero, Lectures historiques, p. 125. 
218 Maspero, Histoive Ancienne, p. 84. 
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there is nothing but prescriptions, methods, and 
formulas of every-day practice.* 

In the domain of physical science, likewise, the 
Oriental cosmogonies reveal no sign of systematic 
conceptions. The Egyptian and Chaldean astronomers 
held that the primeval chaos became order by the 
effect of a divine will. The sky became a liquid mass 
which surrounded the earth, and rested upon the atmos- 
phere as upon a solid foundation. The planets and all 
the stars floated on this celestial ocean, each sailing 
in its boat in the wake of Osiris. Another theory, 
equally widespread, represented the fixed stars as 
lamps suspended from the celestial vault, which a 
divine power lit every evening to illuminate the nights 
of the earth.? 

1 This statement perhaps needs qualification. A papyrus 
recently discovered by Edwin Smith and studied by J. H. 
Breasted (Recueil Champollion, 1922, p. 387-429) describes 
and diagnoses in order, beginning from the head, the principal 
diseases, indicating appropriate remedies for them, and the 
possible chances of recovery. 

218 Maspero, Histoive Ancienne, p. 78. 



GREEK AND ROMAN SCIENCE 

Peal i HISTORICAL -OUTLINE 

GENERAL CHARACTERISTICS 

A MONGST the problems with which Greek 
science confronts us, there is one which is 
particularly complicated, that of its birth. 

This has doubtless been influenced by the intimate 
connection which existed between the inhabitants of 
the countries bordering on the Augean Sea and the 
East, particularly Egypt, as is shown by their many 
commercial transactions. The Greeks themselves are 
unanimous in recognizing this (legend of Cadmus, 
traditions reported by Herodotus, and by Proclus in 
his Commentaries on Book I of Euclid, etc.). 

The question here arises in what really consists this 
influence of Oriental thought on Greek science? Has 
the latter merely received from the former a mass of 
empirical knowledge, or also, in some measure, the 
rational direction which characterizes it? The recent 
discoveries of Minoan civilization have further com- 
plicated this problem. The remains of this civilization 
seem to have survived, outside Greece and Crete, for 
some time after the Dorian invasions.1 Did these 
remains, together. with material imported from the 
East, form the foundation of the civilizations which 

1R. von Lichtenberg, Die aegaische Kultur, Teubner, 
Leipzig, 1911. See also the complete and graphic work just 
published by G. Glotz: La civilisation égéenne, Renaissance du 
Livre, 1923, p. 445, et seq. 

17 
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in the eighth century B.c. flourished in the coastal 

regions of Asia Minor? It is difficult to say, for lack 

of historical data. But it seems probable that the 

characteristic rationalism of Greek science is proper 

to this science;1 in regard to the empirical and 

fragmentary knowledge of the East, it constitutes a 

veritable miracle. For the first time, the human mind 

conceived the possibility of establishing a limited 
number of principles and of deducing from them a 
number of truths which are their strict consequence. 
This achievement, without analogy in the history of 

humanity, is all the more astonishing because Greek 
science, in its first beginnings, had a precarious exist- 
ence. Not having any influence upon economic life, 
it could only exist within the schools of philosophy, 
whose lot and vicissitudes it shared. It developed 
spasmodicaily in a discontinuous fashion, in different 

countries, according to the civilizations which sporadi- 
cally arose on the borders of the Mediterranean. Its 
first cradle was lonia, of necessity the intermediary 

between Greece and Oriental civilization, but in con- 
sequence of the political troubles which disturbed this 
country, Greek science was transported into Greater 
Greece, in the South of Italy. It was there that 
Pythagoras and his school established the lasting 
foundations of the geometrical and astronomical 
sciences, which the Greeks afterwards employed. We 
know how, even during the lifetime of Pythagoras, a 
revolution put an end to the school he had founded, 
without however compromising the existence of his doc- 
trines. These survived partly in Greater Greece, where 
they inspired the subtle dialectic of Zeno of Elea; and 
partly in Greece and the countries which came under 
Greek influence. They also helped to establish new 
centres of scientific life: amongst others, at Athens, 

+22 Milhaud, Nouvelles Etudes, p. 99.—25 Tannery, 
Science helléne, p. 62.—17 Loria, Scienze esatte, Pp. 5. 
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at Cyrene on the African coast, at Cyzicus on the 
borders of the Sea of Marmora. 

From the fourth century B.c. onwards, Greece lost 
her economic and political independence. The effect 
of the conquests of Alexander was the transference of 
scientific activity to Alexandria in Egypt, and in a 
lesser degree, to Pergamum, in Asia Minor. When the 
Roman Empire was definitely established in the first 
century of the Christian era, Rome and Athens natur- 
ally became the fostering centres of science, on the 
same basis as Alexandria. Owing to the religious and 
political revolution achieved by Constantine, the 
Hellenized Orient recovered an independence and 
vitality, which were lacking in the Latin Occident ; the 
sciences, nevertheless, were in peril. It was the age of 
decadence, or better still, as P. Tannery has put it, the 
age of commentators. 

Accordingly, the development of the Greek and Roman 
Sciences can be divided into three quite distinct periods : 

1. A Hellenic period (from its origin to the conquests 
of Alexander, i.e. from 650 to 300 B.C.). 

2. An Alexandrian period (from the dynasty of the 
Ptolemies, about 300 B.c. until the Christian era). 

3. A Greco-Roman period (from the Christian era 
until towards the middle of the sixth century). 

125 Tannery, Scrence helléne, p. 7. 
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CHAPTER I 

THE HELLENIC PERIOD 

(from 650 to 300 B.C.) 

HE beginnings of this period are marked by 
an intimate mingling of scientific, cosmogoni- 
caland philosophical considerations. If Hegel 

is to be believed, these considerations would have 
manifested themselves in the form of a thesis, anti- 
thesis and synthesis on the problem of existence. But 
the historic reality does not correspond to this brilliant 
conception. In fact, from its first appearance, Greek 
philosophical thought betrayed diverse tendencies more 
or less opposed, which often ignored one another. It 
was not with one single problem that it was occupied, 
but rather with a number of questions more or less 
disconnected, concerning the origin and the purpose 
of the Universe. From the first there can be clearly 
perceived three tendencies, which persisted through 
the centuries unto our own times. The school called 
Ionian applied itself to external phenomena, and en- 
deavoured to find in them the final explanation of 
reality. At almost the same period, the Pythagorean 
school, in the south of Italy, sought, on the contrary, 
this explanation in number, an abstract principle which 
is not directly provided by the senses. Heraclitus, 
indeed, considered that the unstable ‘“‘ becoming ”’ was 

the very substance of reality, and that, in order to 
know it, recourse must be had, not to intelligence, 

but to intuition. 
In spite of these divergences, there is, however, 

21 
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amongst all these thinkers, a certain community of 

ideas, in that they did not clearly distinguish between 

spirit and matter. The natural philosophers of Ionia, 

like Heraclitus, attributed spiritual properties to 

matter, and the Pythagoreans considered numbers as 

having perceptible and even moral qualities. The 
differences of opinion, however, rapidly became more 
and more accentuated. The Eleatic school, which was 
inspired by the speculations of Pythagoras, tended 
towards idealism ; whilst the new Ionian school, whose 
last representatives were Leucippus and Democritus, 
enunciated the theories of the atomic philosophy and 
prepared the way for materialism. 

1. IONIA AND ASIA MINOR 

The ancient philosophy of Ionia is often given the 
name of Hylozoism. Its chief characteristic is the 
inseparable connection between matter and life, every 
material element having life and reciprocally. There- 
fore, the discovery of the fundamental material ele- 
ment is sufficient to explain all reality. 

Amongst the representatives of this school may be 
pointed out, on the one hand, Thales, Anaximander, 
Anaximenes, and, on the other, Heraclitus, whose 
ideas remain of fundamental importance to philosophy, 
but of little interest to the history of science.? 

In the seventh century before our era, Miletus 
still enjoyed her political independence, and kept up 
a flourishing commercial connection with Egypt and 
Babylon. It was in this town that THaLeEs lived 
(about 624-548 B.c.). According to tradition, he made 
his fortune by selling salt; but he also used other 
means: one year, foreseeing an abundant harvest, he 

125 Tannery, Science helléne, pp. 52-200.—8 Burnet, Aurore, 
PP. 37-85, 145-194.—17 Loria, Scienze esatte, pp. 11-25.—22a 
Robin, Pensée grecque, pp. 41-56, 86-94. . 
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rented all the olive trees and thus made a good profit. 
In his capacity of merchant he seems to have travelled 
in Egypt and perhaps even in Chaldea. According to 
Herodotus (I, 75) Thales accompanied Croesus, prob- 
ably as an engineer, in his unfortunate military expedi- 
tion against Pteria. Herodotus (I, 74) also attributes 
to him the prediction of the solar eclipse which put an 
end to the war between the Persians and the Lydians, 
and which took place in either 610, 597, or 585 B.c., 
this last date being the most probable. M. Bigourdan, 
however, believes this to be a legend, as the cycle of 
Saros by which solar eclipses were predicted had not 
been established at that epoch. But in verification of 
this fact, ancient testimonies may be quoted, amongst 
them, that of Xenophanes (Diogenes Laertius, 23), and 
it might be explained in the following manner: as we 
have seen, in the seventh century B.c. the Babylonians, 
owing to the simpler periodicity of the eclipses of the 
moon at this epoch, were able to predict them without 
the aid of the cycle of Saros. It is quite likely that 
they also ventured to foretell the eclipses of the sun, 
and that Thales might have brought back from one of 
his travels their predictions, which by chance happened 
to be correct for the eclipse of 585 B.c. 

Thales might also have brought back from his travels 
the Egyptian knowledge of the division of the year 
and of the solstices. His cosmogony likewise seems 
to betray an Oriental origin. The following are its out- 
standing features. Water is the origin of everything. 
Expanded by evaporation it produces air; congealed 
and contracted, it gives birth to the earth. The 
alluvial deposits at the mouth of rivers confirmed this 
belief ina water which could change into earth.? More- 
over every living organism perishes when it is deprived 
of water. 

12 Bigourdan, Astronomie, p. 44. 
28 Burnet, Aurore, p. 50. 
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This being so, the universe is a great liquid mass, 

which encloses a large hemispherical bubble of air 

(Fig. 4). The concave surface of the bubble forms the 

sky, while on the plane surface, the earth, which is 

cylindrical, floats like a cork. The stars are boats 

steered by divinities; the interior of these boats is 

luminous, but not the exterior, so that, when the stars 

float on the diametral surface of the bubble, they are 
invisible. The eclipses are produced every time the 
boats of the Sun or Moon tend to overturn. 

Fic. 4; 

According to P. Tannery, this conception is funda- 
mentally of Egyptian origin, but to Thales belongs the 
merit of having rationalized it by interpreting it 
according to a rudimentary natural philosophy. Thus, 
from the beginning, Greek thought asserted at the same 
time its dependence and its independence with regard 
to the East. 

In another realm of knowledge it appears that Thales 
also imported into Ionia the methods of surveying in 
usein Egypt. Was he, however, the founder of rational 
geometry? It is difficult to say, although it is true 
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that the theorem of proportions by which he calculated 
the height of the pyramids, and the theorem of the 
triangle inscribed in a semi-circle are attributed to 
him. In arithmetic, it appears to have been Thales 
also who introduced into Greece the use of Egyptian 
fractions, the numerator of which is always equal to 
one. 

Belonging to a younger generation, ANAXIMANDER 
was the disciple as well as the fellow-citizen of Thales. 
He was born about 610 B.c.; the date of his death is 
uncertain, but is generally supposed to be about 546 
B.c. Anaximander wrote a treatise which contained 
his doctrines, and which Theophrastus certainly may 
have read. According to the latter, this doctrine was 
as follows (Diels, Dox, 476, 3): ‘‘ Amongst those who 
admit one sole primary element, mobile and infinite, 
Anaximander of Miletus, the son of Praxiades and 
disciple and successor of Thales, says that the aeigor 
is the essence and element of beings ; it was, besides, he 
who first introduced this term of primary element, 
understanding by this, not the water or any other of the 
elements known to us, but a certain endless unlimited 
mass (dtevgov) from which were formed all the heavens 
and all the worlds which they have contained, etc.” 
What is to be understood by the word dzeigorv ? Does 
it stand for a substance extending to infinity in space, 
or a substance finite in its extent, but qualitatively 
indeterminate? The great majority of commentators, 
ancient or modern, lean towards the former inter- 
pretation; at the origin of all things is a primitive 
matter, which extends to infinity and which we cannot 
perceive, since it has been transformed into derivative 
elements such as water, fire, etc. Teichmiller and P. 
Tannery consider that such a conception cannot be 
attributed to Anaximander, because the idea of spatial 
infinity only appeared later in philosophy and in 
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science! It is, moreover, in disagreement with the 

perception of the motion, which, according to 

Anaximander, brings the heavens back into the same 

position every 24 hours. Therefore it is in a qual- 

itative sense that primitive matter 1s, not infinite, 

but indeterminate, that is to say, susceptible of 

taking manifold and varied properties. The same 

divergence of opinions exists as to the ideas of 
Anaximander on the progressive constitution of the 
universe. 

According to J. Burnet the dzevgov is submitted to 
shocks which shake it up and down, and which, in 
certain regions, determine the opposition of heat and 
cold.2. The heat then appears as a sphere of flames, 
which surrounds the cold, represented by a world 
whose entire surface is covered with water. Under the 
influence of the heat, part of the water evaporates and 
changes into moist air. Owing to its force of expan- 
sion, the air then penetrates the flaming sphere and 
divides it into rings, in which the fire is imprisoned and 
becomes invisible. It can, however, escape if an open- 
ing has been left by chance on the ring, when, bursting 
forth, it takes again its luminous consistency and forms 
one of the heavenly bodies we see. This being so, the 
eclipses of the sun or moon, and the waxing and waning 
of the moon are easily explained. These phenomena 
occur every time the openings of the solar or lunar rings 
become completely or partially closed up. This explana- 
tion appears, at first sight, surprisingly ingenious. 
Anaximander, however, may have derived the inspira- 
tion of his theory of rings from the appearance of the 
Milky Way, and, on the other hand, he has but extended 
to the heavenly bodies the explanation which he gave of 
lightning and thunder, namely, a fire escaping through 
the air contained in the clouds. ‘‘ Anaximander held 

+25 Tannery, Science helléne, p. 94. 
*8 Burnet, Aurore, p. 62. 
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that thunder and lightning are caused by the wind. 
When it is imprisoned in a dense cloud and escapes 
with violence, the disruption of the cloud produces the 
noise, and the rent appears luminous in contrast with 
the darkness of the cloud’”’ (Aetius: Diels, Dox, 367, 
22). However this may be, Anaximander held that 
there were three distinct regions in which the rings 
were placed: the rings of the fixed stars formed the 
nearest region, beyond was the ring of the moon, and, 
further still, that of the sun. 

Teichmiiller and Tannery admit this conception as a 
whole, but for them the eternal movement which 
animates the dzevgov is not an irregular disturbance, 
it is the movement of the diurnal rotation.? It is 
this movement, which, in the midst of primitive matter, 

creates the opposing forces, places in the centre of the 
universe the heavier elements, namely, the earth and 
water, then disposes around the earth the lighter 
elements, an envelope of air, and an envelope, lighter 
still, of fire. Finally, it is the centrifugal force, created 
by the movement of rotation, which causes the sphere of 
fire to burst and to divide into rings. The question 
of the innumerable worlds, of which Anaximander 
admits the existence, likewise gives rise to a divergence 
of interpretation which is explicable for the same 
reasons. The adherents to a qualitative dzevgor, 
limited in space and subject to a perpetual movement 
of rotation, think that by “innumerable worlds’ we 
must understand that the actual world will be dis- 
integrated and destroyed by the same cause (diurnal 
rotation) which has created it. Thus a state of chaos 
will be produced, from which will arise a new world, 
and soon. If, on the contrary, we believe d&ze:eor to 

1 The respective distances of the rings were fixed by sacred 
numbers, and not by observation.—22 a Robin, Pensée 

grecque, Pp. 49. 
225 Tannery, Science helléne, p. 88. 
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be matter spatially infinite, it is more natural to admit 

that, in the universe, innumerable worlds can arise and 

develop at the same time. The word innumerable then 

signifies a co-existence in space, and not the simple 

enumeration of worlds succeeding one another in time. 

Thus, the cosmology of Anaximander can be con- 
sistently interpreted in two opposite ways, and, con- 
sidering the texts which have been preserved, it is 
difficult to make a choice. The whole problem is 
focussed on the following question: Was it possible 
in the seventh century B.c. to conceive a universe, 
which, without being infinite in the modern sense of the 
term, was unlimited to such a degree that one region 
alone of this universe could be subject to a general 
movement of rotation ? 

There remains to mention the views of Anaximander 
on the birth of living beings, for they are a very 
singular anticipation of evolutionary doctrines. ‘‘ The 
first animals were produced in moisture, and were 
each covered with a spiny integument; in course of 
time they reached dry land. When the integument 
burst they modified in a short time their mode of 
living.” (Aetius: Diels, Dox 579) 17). “ Living 
creatures were born from the moist element when it 
had been evaporated by the sun. Man, in the begin- 
ning, resembled another animal, to wit, a fish.” 
(Hippolytus: Diels, Dox, 560, 6). 

Finally, a persistent tradition, reported by Strabo 
on the authority of Eratosthenes (Diels, Vor. 1, 12, 41) 
attributes to Anaximander the first geographical map. 
He was also supposed to have introduced into Greece 
the use of the gnomon and of the polos. 

ANAXIMENES, the successor and associate of 
Anaximander, was the last representative of the School 
of Miletus. We do not know the exact period at which 
he lived, except that he was younger than Anaximander 
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and reached his “acme ’”’ ! before 494 B.c., the year when 
Miletus was conquered. He produced a work, which 
has actually survived till the age of literary criticism.? 
His ideas are less daring but perhaps more thought out 
than those of his predecessor. For him, the air was the 
primitive boundless matter, which by condensation 
gave birth to earth and water, and by rarefaction to 
fire. It must not be forgotten that for the first 
cosmologists the air was always a form of vapour, 
darkness being another form. It was Empedocles who 
first discovered that the air is a distinct body, differing 
from vapour, and from empty space. It was he also 
who showed that darkness is a shadow. Anaximenes 
introduced several interesting theories on astronomical 
matters, thus justifying the esteem in which he was held 
by the Ancients. He considered the celestial vault, to 
which the stars are fixed, assolid and turning round the 
earth. In the interior of this vault float the sun, moon 
and planets, upheld by the surrounding air. In this 
way, the planets are distinguished from the stars for 
the first time in Greek astronomy. Anaximenes also 
supposed that dark solid bodies wander under the celes- 
tial vault. ‘‘ The heavenly bodies proceed from the earth 
whose moisture has evaporated and, by its expansion, 
has formed fire; the latter rises and forms the heavenly 
bodies. In the region occupied by these, there are also 
bodies of a terrestrial nature, carried likewise by the 
movement of revolution ”’ (Hippolytus : Diels, Dox, 561, 
4). Thiswas a fruitful conception, for it was bound to 
lead to the true explanation of eclipses. Indeed there 
was but one step needed to arrive at the supposition that 
the moon is one of these dark bodies, illuminated wholly 
or partly by the sun, according to its position, and 
capable of being eclipsed by the shadow of the earth.? 

1 Epoch of full intellectual maturity ; about the age of 4o. 
28 Burnet, Aurore, p. 77. 
$25 Tannery, Science helléne, p. 152. 
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The advance of the Persians in Lydia put an end to the 

School of Miletus, and, at the beginning of the sixth cen- 

tury B.C., caused an emigration of philosophical thought 

to Sicily and the south of Italy. The introduction of 

Oriental cults, amongst which the most important was 

that of Dionysus, caused, at the same epoch, in Greece 

and the Greek colonies, a religious awakening which 
had a profound effect on philosophical speculations. 

Although belonging to a younger generation than 
Pythagoras and Xenophanes, Herac.itus of Ephesus 
must be mentioned before them. Descended from the 
kings of Ephesus, Heraclitus reached maturity about 
the year 504 B.c. He renounced his royal rank in 
favour of his brother and remained all his life in Ionia, 
living solitary and disdainful, despising alike the men 
of science and the common people ‘‘who cram their 
bellies like cattle.” This contempt was partly justifi- 
able, for the Greeks of Ephesus lived in indolent luxury 
under a foreign yoke. 

Primarily a theologian, Heraclitus appeals not to 
science but to inspiration.1 and in his writings, he 
expresses himself in a sibylline manner, which caused 
him to be designated “‘ obscure.’’ His astronomical 
system is closely related to that of Thales. The 
fundamental idea of this system is the zdwaégei (every- 
thing is in a perpetual state of flux). Nothing is 
stable, nothing is fixed. Life and death, good and evil, 
cold and heat, change incessantly one into the other. 
Nothing is either this or that, but everything is becom- 
ing. This perpetual becoming has its source in the 

* According to the majority of commentators (amongst 
others, 25 Tannery, Science helléne, p. 186), the source of this 
inspiration was the divine logos. 8 Burnet (Aurore, p. 148 
and p. 159) thinks this interpretation erroneous and based on 
paraphrases added by the Stoics to the original sentences of 
Heraclitus in handing them down to us. Logos means simply 
the discourse of Heraclitus in as far as it was prophetic, 
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vital fire, which is transformed into all things and which 
is perpetually one and many at the same time. By 
this, Heraclitus did not in any wise think to resolve a 
logical problem and to affirm the identity of con- 
tradictory propositions. This problem did not present 
itself to his mind, it was on the ground of experience 
that he based his affirmation of the union of contraries. 
The changes which transform fire into water, then into 

earth, form the up-road. The changes which inversely 
transform earth into water, then into fire, are called 
the down-road. Thus between the earth and the sky 
there is a perpetual exchange of effluxes following a 
double way, ascending and descending. From the 
earth and sea arise effluxes, some dry, others moist. 
The former are of an igneous nature, they are collected in 
the hollow basins which constitute the heavenly bodies, 
at the moment when these rise on the horizon; they 
then ignite to become extinguished when setting, giving 
a residuum of water. The damp effluxes, by their 
mixture with the dry ones, form our atmospheric air, 
which extends to the moon, whence the water falls 
back either as rain, or frozen in the form of snow. The 
various proportions of the dry and moist effluxes 
determine the vicissitude of days and nights, months 
and seasons. In winter, for example, the sun in its 
course is lower on the horizon, and it causes a greater 
evaporation of the damp layers near the earth, hence 
the aqueous element threatens to predominate and to 
completely extinguish the sun, and this is why the sun 
must return to the north to find there new sustenance 
(Cicero, de natura deorum, III, 14).1 

According to Tannery, the basis of these conceptions 
was borrowed from Egyptian solar myths, imported 
into Asia Minor with the cult of Dionysus; but this 
is a debatable point.? So also is the signification to be 

18 Burnet, Aurore, p. 177. 
225 Tannery, Science helléne, pp. 177 and 179. 
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given to the great year, containing 18,000 ordinary 

years, at the end of which there would be a universal 

conflagration, and afterwards a reconstitution of the 

universe, periodically. This law of periodicity is quite 

contrary to the central idea of incessant flux affirmed 

by Heraclitus.1 However this may be, Heraclitus 

applied to anthropology his ideas of the nature of 
being. To him, man was a mixture of fire, water and 

earth. The soul is a dry vapour which, in the waking 
state, is nourished by the fire spread throughout the 
world. In sleep, the exchange is less active, there is 
an encroachment of the moisture contained in the body, 
and this is why we lose consciousness. The same takes 
place in intoxication. ‘‘ When a man is drunk, he is 
led by a young beardless boy ; he stumbles, not knowing 
where he walks, because his soul is moist.”” “‘ The dry 
soul is the wisest and the best” (Diels, Vor. I, frag. 

117, 118, p. 78). Finally, when the soul changes into 
water or fire through the predominance of one of these 
elements, it leaves the body to begin once again its 
incessant journey above and below.? 

2. PYTHAGORAS AND HiS SCHOOL 

Amongst the thinkers who, in the sixth century B.c. 
left Ionia in order to escape from the Persian rule, we 
must first mention PyTHAGORAS, who was probably 
born in 572 and died in the year 500 B.c._ It is not easy 
to reconstitute the life and doctrine of this famous 
man from the legends which surround them, and 
which for the most part were the creation of Neo- 
Pythagoreanism in the first centuries of the Christian 
era. In particular the lives of Pythagoras written by 

18 Burnet, Aurore, p. 180. 
28 Burnet, Aurore, p. 175. 
* Pythagoras, for example, kills a venomous serpent by 

biting it; he was seen at the same time in Crotona and 
Metapontum, etc. 
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Iamblichus, Porphyry, and even by Diogenes Laertius, 
are doubtful, but they contain much more ancient 
material which is worthy of belief. From anauthorita- 
tive source we know that Pythagoras passed the first 
years of his life at Samos, and that he was the son of 
Mnesarchus. He left Samos to escape from the 
tyranny of Polycrates and settled in the south of Italy 
at Crotona, a town already famous for its school of 
medicine. The travels in the East attributed to him, 
with the exception perhaps of the journey to Egypt, 
appear to have been invented later to justify his 
teachings. 

At Crotona, Pythagoras founded a philosophical- 
religious school, probably after the type of the Orphic 
communities. Its adherents were submitted to a severe 
discipline ; they were obliged to abstain from eating 
beans ? and meat, except when they were sacrificing to 
the gods, for in that case, an act, which in ordinary 
circumstances was impiety, became an obligatory rite.® 
The Pythagoreans had, moreover, to observe not only 
moral rules but veritable taboos, such as ‘‘ not to touch 
a white cock; not to sit on a quart measure; not to 
walk on the high roads; not to leave the mark of the 
pot on the ashes, when it is lifted off, but smooth the 
ashes.”’ 

Did the school of Pythagoras really comprise various 
degrees of initiation, acousmatical, mathematical and 
physical, with an exoteric and an esoteric teaching, 
jealously guarded? Or were these designations in- 
vented to explain the diversity of tendencies which 

18 Burnet, Aurore, p. 94.—22 a Robin, Pensée Grecque, 

p. 58. On the life of Pythagoras by Iamblichus, see G. Méau- 

tis, Recherches sur le pythagorisme, Attinger, Neuchatel, 1921, 

OT: 
Me the signification of this abstinence see J. Larguier des 

Bancels, Archives de psychologie, xvii, pp. 58-68. 
$8 Burnet, Aurore, p. 106, 
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manifested themselves later in the Pythagorean teach- 

ing? It is difficult to say. It appears to be incorrect 

also to attribute to primitive Pythagoreanism, as 

several historians do, a political, aristocratic and 

Dorian ideal, and to see in the conflict of this ideal with 

popular aspirations the principal cause of the fall of the 

school. ‘This fall was doubtless caused by the domina- 

tion which the Pythagoreans had for a time over the 
town, and which from its religious and moral nature 
must have been very tyrannical. However this may 
be, from the beginning of the struggle with the rich and 
noble Cylon, Pythagoras withdrew to Metapontum 
where he died soon after. His disciples remained for 
some time in possession of power, but overcome in the 
end, most of them were massacred. The survivors 

concentrated at Rhegium, until, with the exception of 
Archippus, they were forced to leave Italy. It was then 
that Lysis and PHILOLAUS, whose “ acme’”’ occurred 
about the year 440 B.c., went to continental Greece and 
finally settled at Thebes. In this town they founded 
an important Pythagorean community to which be- 
longed Srmm1As and CEBES, the two Thebans intro- 
duced by Plato in the Phedo. Philolaus, however, 

appears to have returned to Italy, a little before 
the death of Socrates in 399 B.c. At this time the 
chief seat of the school was Tarentum, whence the 

Pythagoreans directed the opposition against Dionysius 
of Syracuse. To this period ARcHYTAS belongs. ‘“‘ He 
was the friend of Plato and almost realized, if he 
did not suggest, the ideal of a king-philosopher. He 
governed Tarentum for some years, and Aristoxenus 
tells us that he was never defeated in any battle. He 
was also the inventor of mathematical mechanics.1 

Thebes and Tarentum were not the only towns in 
which the Pythagorean doctrine found a refuge; it 
flourished also in other places, amongst them Phlias in 

*8 Burnet, Aurore, p. 317. 
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Argolis. The doctrine of Pythagoras raises as difficult 
problems as does his life, for he has left no writing to 
enable us to distinguish his own thought from that of 
his disciples. We can, however, affirm that he pro- 
fessed belief in the transmigration of souls, for the 
testimony of Xenophanes is precise on this point. 
“One day, it is said, as he (Pythagoras) was passing 
by a dog which was being beaten, he cried, full of pity, 
“Stop, beat no more, it is the soul of a friend ; I recog- 
nized it, hearing its complaints.’”’ (Diels, Vor. I, 47, 
20). On the other hand, Pythagoras was in reality a 
great thinker, as the testimony of Heraclitus proves. 
“Pythagoras, the son of Mnesarchus, extended his 
researches further than any other man, and choosing 
from certain writings, claimed as his own wisdom what 
was only polymathy and art of wickedness.’ (Diels, 
Vor. I, 80, 14). 
As a thinker, Pythagoras was certainly struck by the 

fact that phenomena which are heterogeneous from the 
point of view of sensation, may nevertheless show a 
definite numerical relationship. Figures very different 
in shape may have the same surface. Musical sounds 
are produced according to intervals (octave, fifth, 
fourth) which follow a numerical law. Imbued with 
this idea Pythagoras extended the study of arithmetic 
beyond commercial needs (Stobzeus, I, p. 20, 1)! He 
and his school came to the conclusion that number and 
its properties constitute the basis of all things. Hence, 
number is not a pure abstraction, it isa concrete reality, 
although our senses cannot directly apprehend it. 
Numbers have each spatial, physical and even spiritual 
properties, clearly defined. By their combinations 
they give birth to the beings and the things which we 
see. The contributions which the Pythagorean school 
made to arithmetic, geometry and astronomy were 
very remarkable. They definitely directed Greek 

1Quoted by 8 Burnet, Aurore, p. III. 
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science along rational paths. Some Pythagoreans also, 

for example, Philolaus and Alcmzon, carried out 

successful physiological and medical researches. 

3. THE ELEATIC SCHOOL 

XENOPHANES is generally considered the foremost 

representative of this school; he was born in 576 B.c. 
at Colophon, when this opulent city had been under 
the Lydians for 60 years. Driven from his native land, 
he travelled through Greece, criticizing the religious 
opinions and social customs of his time. He finally 
settled in Sicily, but he does not seem to have stayed 
at Elea, although he had composed a poem in honour 
of this town. He died in 480 B.c. The cosmology of 
Xenophanes is not of great scientific interest for his 
aim was primarily to discredit anthropomorphic con- 
ceptions of the divinity. Being convinced that men 
made gods in their own image, Xenophanes affirmed 
the existence of a God, one, eternal, immovable who, 
seeing and hearing all, governs all things. This 
affirmation must not, however, be interpreted in the 
sense of a spiritualistic monotheism. The one God of 
Xenophanes is the heaven, the perceptible universe to 
which the poet attributes senses and intelligence. It 
is composed of two regions: the earth, flat and immov- 
able, which extends in all directions, and the air which 
covers it, also illimitable. The heavenly bodies have 
nothing of the divine, they are incandescent clouds, 
similar to St. Elmo’s fire; they become ignited at one 
end of the earth, then follow a rectilinear trajectory, and, 
as meteorites, bury themselves in the sands of the desert. 
The moist vapours of the night incessantly form new 
clouds, which are lit up in the morning; in this way a 

*14 Gomperz, Penseurs (1, p. 167), represents his life as 
that of a Homeric poet ; but 8 Burnet, Aurore, p. 129, disputes 
this point, 
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new sun is born each day. Thus he explains the fact 
that the universe is motionless although it appears 
to move as a whole. By an optical illusion, easy to 
detect, we attribute to everything the changes which 
characterize particular phenomena. Thanks to the 
distinction which he established between the apparent 
and the real, Xenophanes opened the way for his dis- 
ciple PARMENIDES. 

According to Diogenes Laertius (IX, ch. III, 23) 
Parmenides reached his ‘‘ acme ”’ in the year 500 B.C. ; 
but if we accept the somewhat doubtful indications 
given by Plato in his dialogue (Parmenides, 127 b), he 
was born in 516 B.c. and could not have reached his 
“acme” before 480 B.c. He scarcely left Elea, his 
native town. It was there that he received instruc- 
tion from the Pythagorean Ameinias, who made a 
profound impression upon him. In the famous poem 
which he wrote, he shows us the virgins, daughters of 
the Sun, leading him to the dwellings guarded by 
avenging Justice and inhabited by the Goddess, who 
takes him by the hand and teaches him to distinguish 
between the truth which rests on the real being and the 
ideas suggested by appearances. The Being or Ent is 
what the intelligence understands and plainly identifies ; 
the not-Being, or Nonent, is what cannot exist because 

of internal contradictions. The real Being is space 
materially extended, immovable, indivisible, uncreated 
and imperishable; this space is also limited and 
spherical, for an indefinite whole is inconceivable. 
The not-Being is empty space, the conception of which 
corresponds to nothing, since by its definition the 
empty space excludes all positive reality. Beside the 
true Being there are particular phenomena, changing 
and perishable. These arise from appearances and can 
only create ideas in our mind. In expounding these 
ideas, Parmenides is inspired by the cosmology of 
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Anaximander, complemented by that of Pythagoras. 

He also sets forth ideas on physiological subjects in 

accord with the medical science of his time. By plac- 
ing in opposition the immovable and indivisible Being, 
and the sensible phenomena which move and divide, 

Parmenides raised a problem which up to modern times 
has been a stumbling block to philosophical reflection : 
what relation is there between the movement of an 
object and the immovable portion of space in which 
this movement takes place ? 

This problem was clearly defined by a disciple of 
Parmenides named ZENO. Twenty-five years younger 
than his master, Zeno also dwelt at Elea where he was 
born in 489 b.c.; he took an important part in the 
direction of public affairs and meanwhile made a 
journey to Athens, which was recorded by Plato. 
According to tradition, Zeno was put to torture for 
having conspired against a personage who tyrannized 
over the town of Elea, and, rather than denounce his 
fellow conspirators, he cut out his tongue. Tradition 
also attributes to him several works: An Interpretation 
of Empedocles; Against Philosophers; Ihe Disputa- 
tions ; Treatise on Nature. Because of the systematic 
manner in which he exposed and criticized the opinions 
of his adversaries, he was called by Aristotle the father 
of dialectic. (Diog. Laert., IX, 25). 

As to his celebrated arguments, some have been 
preserved to us by Simplicius ! and others by Aristotle 
(Phys. VI; 239 b, 9-33). The former treat of the 
relation of unity and plurality; the latter of the 
problem of motion. What was the exact meaning of 
these terms in the doctrine of Zeno? Did he, by their 
exposition, attempt to demonstrate the impossibility 
of motion and of plurality ? Or did he simply desire to 

* Ritter and Preller, Historia philosophiae graecae, goth 
edition, Gotha, 1913, 131-4. 
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prove that the Pythagorean theses on discontinuity led 
to consequences still more absurd than the affirmations 
of Parmenides?! This latter hypothesis would seem 
to be more correct, for Plato says of Zeno concerning 
the subject of his writing that “this is a kind of 
reinforcement of the argument of Parmenides against 
those who try to turn it into ridicule, for this reason, 

that, if reality be one, this argument is entangled in a 
mass of absurdities and contradictions. This writing 
argues against those who uphold plurality and gives 
them as much as and more than they have given ; the 
aim is to show that their hypothesis of multiplicity will 
be confused with still more absurdities than the 
hypothesis of unity if elaborated with sufficient care ”’ 
(Parmenides 128 c). Whatever may have been the 
aim pursued by Zeno, his reasonings have an inde- 
pendent value, for they emphasize forcibly the difficulty 
of explaining logically the relations of the one and the 
multiple, the finite and the infinite, the mobile and the 
immobile. 

MELIssus (of Samos) appears to have been like Zeno 
the disciple of Parmenides at almost the same epoch. 
He affirmed in a more systematic manner than his 
master the unity of Being, but his views on this subject 
concern the history of philosophy more than that of 
science. 

4. ATOMISTIC TENDENCIES 

Both the works and the personality of EMPEDOCLES 
have always been a subject of discussion. The 
Ancients considered him either an impostor or a genius 
(Lucretius, I, 716). In modern times, Hegel treats him 
with contempt, Nietzsche admires him, and Gomperz 
sees in him a precursor of modern chemists. 
Empedocles was probably born in 490 and died in 

120 Milhaud, Phi. geom, p. 132.—25 Tannery, Science 
helléne.—8 Burnet, Aurore, p. 360. 

4 
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424 B.c. He scarcely left Agrigentum, his native 

town, except towards the end of his life, when he was 

forced into exile for having ardently supported demo- 

cratic principles in spite of his wealth and titles of 
nobility. The most diverse reports of his death have 
been current; according to some, he threw himself 
voluntarily into the crater of Etna, according to others 
he was hanged. But it is certain that Empedocles 
played an active part as philosopher, physician and 
politician, and that he made a profound impression 
upon his contemporaries. He believed in his own 
worth. ‘I am for you,” said he to his listeners, ‘‘ as 
an immortal god, no longer a man; I am honoured by 
all, as is just; wreathed with fillets and green coronets, 
I go into the neighbouring towns receiving the homage 
of men and women; they follow me in thousands 
asking the way of deliverance... .” (Diels, Vor. 

I, p. 205). Despite the high opinion which Empedocles 
had of himself the deeds attributed to him appear to 
be legendary. It was not he who made healthy the 
marshes round Agrigentum. Still less did he protect 
the town against the Etesian winds, and resuscitate a 
woman supposed to have been dead for thirty days. 
These beliefs seem to have originated from certain 
passages in his poem which have been distorted from 
their original meaning.t 

As a philosopher, Empedocles appears to have been 
influenced both by Pythagorism and by Parmenides. 
He admits with the latter that reality is a plenum, 
spherical, continuous, eternal and immobile; but he 
attempts to explain the birth of motion and sensible 
phenomena by a method different from that of the 
arithmetical pluralism professed by the Pythagoreans. 
The universe is based on four imperishable elements, 
namely, earth, water, fire, and air, which Empedocles 
was the first to distinguish clearly from moisture and 

+8 Burnet, Aurore, p. 235. 



THE HELLENIC PERIOD 4I 

darkness. These elements have natural attractions or 
repulsions for each other which cause them to combine 
or to separate. They float in two surrounding media, 
which are love and hatred. These media, although 

invisible to the senses, are material forces just like the 
ether of the physicists. They act indifferently on all 
bodies. Love, for example, has the effect of uniting 
elements whose natural affinities do not impel them to 
unite; hatred, on the contrary, separates the bodies 
which are naturally inclined to combine. The natural 
affinities of corporeal molecules and the combined 
action of hatred and love are sufficient to explain the 
changes and the astonishing diversity of sensible 
phenomena. In the beginning the four elements 
formed a harmonious spherical whole, entirely enveloped 
by love; around the universe thus constituted ex- 
tended the finite medium of hatred. This latter, 
similar to the empty space of the Pythagoreans, at a 
given moment absorbed the four elements, and taking 
the place of love, drove the latter to the end of the 
world, thereby creating a veritable chaos. But this 
chaos did not last for ever; a movement of revolution 
was gradually produced in the universe, at first very 
slow (nine months instead of a day) then becoming 
more and more rapid. The central region was but little 
affected by this movement of universal rotation, and it 
was into this region where tranquillity reigns that love 
hastened to build up the world anew. The air escapes 
first, but compressed by the limits of the universe, it 
is transformed into a hollow crystalline sphere. Fire 

1Here we are following the current interpretation, which 
is also that of 25 Tannery, Science helléne, p. 310, but not of 
8 Burnet, Aurore, p. 268, who thinks that according to Empe- 
docles our actual world would be in the cycle of disorganiza- 
tion due to hatred, and not in the period of organization by 
love. This difference of opinion is of secondary importance 
because it does not modify the cosmological conceptions of 
Empedocles as a whole. 
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accumulates on one half of this sphere, making it 

luminous; the other half remains dark. This is why 

the earth, placed in the centre of the universe, sees the 

alternation of day and night. As to the sun, it is 

merely the image of the earth, produced by reflection. 
‘The sun is not a fiery substance, but an image of 
reflected flame, similar to that which comes from water ”’ 
(Diels, Vor. I, p. 158, 35). The light which comes from 

the fiery hemisphere strikes the earth, then, concen- 
trated there, it is sent back on to this same hemisphere, 
where it appears to us as a luminous disk. That this 
really was the idea of Empedocles, Plutarch confirms 
by one of the characters he introduces; “‘ You laugh 
at Empedocles,’’ said he, ‘‘ because he attributes to the 
sun the following origin: the light of the sky after 
having been reflected on the surface of the earth, reflects 

the image of the earth again on the sky ” (Diels, Vor. 
I, p. 188, 8). This conception, although at first sight 
curious, is very easily explained.t_ The discovery had 
just been made that the moon shone by reflected light, 
and Empedocles was naturally led to give to this theory 
a wider application than was legitimate.? 

18 Burnet, Aurore, p. 272. 
* It is interesting to compare the views of Empedocles with 

the ideas expressed by the astronomer Nordmann in his 
scientific romance, entitled ‘‘ Einstein and the Universe.” 
The curvature of space being constant and such that it closes 
upon itself like a spherical surface, one may imagine ‘“ that 
the rays emanating from a star, from the sun, for example, 
will converge at a diametrically opposite point of the Universe, 
after having gone round it,”’ and that they thus form a new 
star. It is true, adds Nordmann, we have not yet been able 
to prove the existence of these phantom stars, ‘‘ But what 
observers could not do yesterday, they will be able to do 
to-morrow by the help of the suggestions of the new science.” 
One can thus foresee ‘‘ the surprising and unexpected conse- 
quences of the new conceptions, which exceed in their fan- 
tastic poetry all the most romantic constructions of imagina- 
tive extrapolation, The real or at least the possible ascends 
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Beside the nature of the lunar light, Empedocles laid 
claim to another equally important discovery of his 
times, which enabled him to determine the true cause 
of solar eclipses. On the other hand, he professed 
strange opinions on the evolution of living beings. These 
had their birth in the following manner: the limbs, 
heads, arms, legs, etc., appeared separately, then they 
were united indiscriminately bylove. Thus there came 
into existence cattle with human heads, and monsters 

with several heads. Of these strange animals only the 
fittest survived and perpetuated themselves by the 
ordinary methods of procreation. In physiology, 
Empedocles maintained that respiration takes place 
not only by the mouth, but by all the pores of the body. 
He also had an interesting theory of perception which 
has been preserved by Theophrastus. Perception is 
due to the contact of an element found in the organs of 
our senses (fire, for example, in the eye) with the same 
element placed outside us (Diels, Dox, 500,19). By his 
conceptions as a whole and above all by his doctrine 
of the four elements, Empedocles was bound to exercise 
a lasting influence on medicine as well as metaphysics. 

ANAXAGORAS was the contemporary of Empedocles 
and Leucippus. He was born in the year 500 B.c. at 
Clazomenae, where he possessed much property. In 
order to devote himself entirely to philosophy he con- 
verted his arable land into pasture for sheep, and after- 
wards left it entirely to his family. He then settled in 
Athens, where he introduced philosophical speculations, 

to giddy heights, which have never been reached by the golden 
wings of fancy ” (p. 180 e¢ seg.). Empedocles would certainly 
have been surprised, could he have known that at the begin- 
ning of the twentieth century the theory of phantom stars, 
in a finite and spherical universe, would be considered as a 
giddy height which human imagination up to the present 
had never dared to attempt. 
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but being accused of atheism for having said that the 

heavenly bodies were simple material bodies, even the 

friendship and protection of Pericles could not save him 

from banishment, and he took refuge at Lampsacus, 
where he died in 428 B.c., honoured by all for the no- 
bility of hischaracter. Helefta“ Treatise on Nature,”’ 

several fragments of which have come down to us. In 
this treatise he is the first to give the true explanation of 
the phases of the moon, likewise the first to discover the 

true nature of the light of the moon, and consequently 
he expounds the theory of eclipses. On the other hand, 
he considers the sun, moon, andall the stars to be burn- 

ing stones, which are moved in a circle by the rotation 
of the ether. Unfortunately, on other points, he holds 
the opinions of Anaximenes, and regards the earth as a 
flat and concave body. As to the universe, Anaxagoras 
declares that it is at one and the same time infinite and 
animated by a movement of diurnal rotation, and in 
order to remove the contradiction implied by this 
affirmation, he admits that one part only of the universe 
is in motion, and, with the exception of this part, all 
that extends to the infinite is motionless. Motion is 
not inherent in matter, it is communicated to it from 

without by means of a subtle and intelligent fluid which 
is Mind or Nous (vodc). This is not the supreme intelli- 
gence, in the meaning which Plato and Aristotle give to 
thisterm. It is rather an organizing omniscient force, 
which is at the same time corporeal, personal and im- 
personal, and which relates more to the physical order 
than to the moral order (Plato: Phaedo, 97 Cc). 
This being so, the universe is formed as follows: The 
Nous puts in motion a portion of the infinite and 
immobile matter, then it propagates its organizing 
influence over a vaster and vaster region of the universe. 
No limit can be assigned to this influence, since on one 
hand the universe is indefinitely extended, and on the 
other hand matter is indefinitely divisible, for vacuum 
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is incomprehensible and therefore cannot exist. ‘In 
relation to the small, there is not a least, but there is 
always a smaller, for it is not possible for Being to be 
annihilated by division. In the same way in relation 
to the great, there is not a greater, and it is equal to 
the small in plurality, and in itself each thing is at the 
same time great and small’ (Diels, Vor. I, p. 314, 16). 
In giving these definitions, Anaxagoras was the first 
to bring to light one of the aspects of the mathematical 
infinite, which he wrongly connects with sensible 
phenomena. The world is a magnitude which increases 
beyond all limits, and matter is indefinitely divisible. 
Thus, according as it is indefinitely divided or inde- 
finitely added to, the same thing may be said to be 
infinitely great or infinitely small. Only if matter 
be infinitely continuous and divisible, how can it 
form individual and distinct beings? Aristotle and 
Zeller answer this question by saying that Anaxagoras 
believed matter to be composed of an infinite number 
of elements all qualitatively different, and which the 
influence of the Nous had gradually grouped according 
to their affinities. The various groups which were 
formed in this manner could separate, and this explains 
the birth and death of phenomena. This conception 
was very nearly analogous to that of Democritus. 
Tannery judges it unacceptable as Anaxagoras 
expressly declared that empty space does not exist. 
According to Tannery the atomism taught by 
Anaxagoras was essentially qualitative. The infini- 
tesimal elements of matter are of the same nature 
as matter taken as a whole. For example, a part of 

the human body, however small it may be, contains 
heat, cold, hairs, teeth, muscles, etc. Finite bodies 

do not therefore result from a mechanical mixture of 
atoms differing in quality, for Being, however much 
it is divided, remains the same qualitatively. But, 
if this be so, whence come the diversities which our 
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senses reveal to us? They result simply, answers 

Anaxagoras, from the fact that the Nous intensifies 

such or such a quality and makes it predominate over 

some other in the constitution of the body. This is 
the reason why objects which we perceive appear to 
us to differ from one another, although they are com- 
posed of exactly the same substance. The qualitative 
atomism of Anaxagoras is a remarkable effort to 
reconcile the unity and plurality of Being; but it is 
unfortunately a hypothesis which scarcely seems 
susceptible of scientific verification. It had, never- 

theless, a great influence on Plato and Aristotle. How, 
asked Anaxagoras, can qualities, which sensation 

shows to be irreducible (red and blue for example) 
mix together? Transferring this problem to the 
world of ideas, Plato likewise examined in what 
manner ideas, which each formed an_ indissoluble 

whole, could form a group and partake of each other’s 
properties. As to Aristotle, if he borrowed from 
Empedocles the theory of the four elements, under 
the influence of Anaxagoras, he gave them a purely 
qualitative signification, which persisted during the 
Middle Ages and which hampered the progress of 
physical science, as such a conception discards the 
use of mathematics. 

About 460 B.c., Leucippus of Miletus, a disciple 
of Parmenides, and a contemporary of Empedocles, 
taught another system of atomic philosophy more 
scientific and more important. His ideas were taken 
up and developed by Democritus of Abdera (460-370 
B.C.) who, according to tradition, travelled in Egypt 
and as far as the Indies. Amongst the works attri- 
buted to him, several were really written either by 
his master or his disciples. The outstanding idea of 
all these works is the following : In spite of the opinion 
of the Eleatic school, the existence of empty space 
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and not-Being must be admitted, for without empty 
space movement is inconceivable ; if movement exists, 
empty space also exists. On the other hand, to enable 
particular movements to be effected everywhere, 
empty space must penetrate and divide Being. But 
this division cannot go on indefinitely or Being would 
be annihilated. It results therefore that all bodies ~ 
must be composed of ultimate elements or atoms. 
From a metaphysical point of view, these atoms 
possess all the properties attributed by the Eleatics 
to Being. They exist from all eternity, they are quite 
complete and hence indivisible; they are absolutely 
simple, without any internal property which would 
distinguish them qualitatively from one another. 
However, they differ physically in form and magnitude, 
and this is why the natural bodies resulting from their 
combination appear to us so varied. The atoms have, 
moreover, a weight which is proportional to their 
magnitude. According to Burnet, this property exists 
in a relative sense, for it does not appear in an isolated 
atom. The lightness and heaviness of the atoms is 
only due to a whirling collective movement.t_ Under 
these conditions natural phenomena are easily 
explained. Change, birth, and death result from the 
combination or dissociation of atoms. Everything 
is done in a purely mechanical manner, and where we 
believe we discern a distant action, there is an inter- 
mediate medium which transmits theaction. Further, 
to account for the perceptions of the senses, we must 
distinguish between the primary or objective qualities 
(weight, density, hardness) and the secondary qualities 
(colour, taste) which depend upon our manner of per- 
ception. On this atomic theory is based the explana- 
tion given by the school of Abdera of the formation and 
structure of the world. Unfortunately, having once 
postulated the whirling movement and the combination 

18 Burnet, Aurore, p. 396. 
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of atoms resulting therefrom, it simply adopted the 

cosmological ideas of the first Ionians, without taking 
account of the progress made by the Pythagoreans. 

The ideas of Democritus on the soul and sensation 
are more interesting. The soul, according to him, is 
composed of round, extremely tenuous atoms of an 
igneous nature. Because of their tenuity these atoms 
continually tend to escape from the body, but . 
respiration constantly renews their number. When 
this weakens, there is sleep and sometimes lethargy ; 
when it ceases altogether, death supervenes. As to 
sensations, these imply a direct contact with objects 
or emanations coming from them. For example, if 
we perceive bodies at great distances it is because a 
group of atoms keeping the shape of these bodies 
makes an impression on our visual organ. In a more 
general way, the function of thought is connected with 
the temperature and mobility of psychical atoms. If 
the soul is too hot or too cold, it makes an inaccurate 
representation of reality. 

As asystem of philosophy, atomism marks an impor- 
tant stagein Greek thought. By affirming the existence 
of empty space, and conceiving Being under the form of 
immutable atoms, which incessantly unite and separate, 

the school of Abdera reconciles the theories of Herac- 
litus with those of the school of Elea. Becoming is 
not the whole of reality but it is an important part 
of it. The controversy in which Greek philosophy 
had been involved from its beginning was thus settled 
and the dialectics of Plato could come to birth. 

5. MEDICAL SCIENCE 

Between the fifth and sixth centuries B.c. mathe- 
matics, astronomy and biology separated more and 
more from philosophical speculations and began to 
establish themselves as independent sciences. Medical 
science, however, had not waited until this period to 
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live its own life. Philosophers such as Pythagoras 
and Empedocles had devoted much thought to this 
science. Unfortunately, all the medical literature prior 
to the Hippocratic writings has disappeared, absorbed 
by these writings. We can, nevertheless, form some 
idea of what medical science was before Hippocrates.1 

It had its beginnings in magic, but the priests were 
able to direct it into other channels and to found 
numerous clinics called asclepieia or temples of Ascle- 
pius. The one at Epidaurus, a veritable sanatorium, 
was celebrated for a long time. Dreams and _ their 
interpretation played a great part in the treatment 
given to the sick. There were also lay asclepieia 
equally important. The gymnasia in which a dietetic 
regime was imposed upon the athletes often supplanted 
the other establishments both religious and lay. At 
this time various schools arose, amongst which must 
be mentioned those of Cyrene, Crotona, Rhodes, and 
especially Cos and Cnidus, the two most celebrated. 
From the sixth century B.c. the Greek physicians had 
acquired a great reputation. Democedes (521-485 B.C.) 
who, after having tended Polycrates of Samos, was 
taken a prisoner by Darius and became his confidential 
councillor, bears witness to this (Herodotus, III, 125). 
He came from the school of Crotona, made famous by 
ALCMAEON, who practised the dissection of animals, 
and discovered the most important sensory nerves, 
considering them as empty canals. He explained 
illness as a disturbance of equilibrium between the 
opposing elements which constitute the body, to wit 
cold and heat, dryness and moisture, etc. This 

Pythagorean theory had consequently a great influence 
on pathology.? Nevertheless, to the schools of Cos 
and Cnidus belongs the honour of having established 

1 La Grande Encyclopédie, article Gréce, with bibliographical 
notes, See also 14 Gomperz, Penseurs, I, p. 291. 

215 Heiberg, Naturwiss., p. II. 
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the Science of Medicine, thanks above all to Hippo- 
crates, who lived at Cos in the second half of the fifth 

century B.c. We know little of the beginnings of 
these two schools and the exact causes of their cele- 
brated rivalry. But we know that both at Cos and 
Cnidus the teaching comprised: (1) ordinary lessons ; 
(2) clinical studies; (3) a practical apprenticeship. 
The student was initiated by a solemn oath, which was 

at the same time a rule of conduct for the exercise 
of his future vocation. He “‘ promised to honour his 
master ”’ as his parents, to aid him in all his necessities, 

and to instruct gratuitously his descendants if they 
chose the same profession as himself. Apart from 
these, he might only instruct in medicine his own sons 
and pupils bound by contract and oath. He swore to 
help the sick “‘ according to his knowledge and power ” 
and to rigidly abstain from any culpable or criminal 
use of therapeutic means. He must not give poison, 
even to those who ask it ; he must not give any abortive 
to women, and must not practise—even where healing 
seems to require it—the operation of castration, which 
was strongly condemned by Greek sentiment. Finally 
he promised to abstain from all the abuses open to 
one in his position, especially erotic abuse towards the 
free or slaves of both sexes, and he pledged himself 
to keep inviolably all the secrets into which he might 
be initiated either in the exercise of his profession or 
outside it. Other precepts still were given: the 
physician must observe the most scrupulous cleanli- 
ness but avoid the abuse of perfumes; he must shun 
all appearance of quackery, must be modest in his 
fees and not demand them before giving his attend- 
ance, for fear of enervating the sick and aggravating 
their condition, for ‘“‘ where is the love of humanity, 

1 Passages taken from the translation by Littré of the 
Works of Hippocrates, and quoted according to 14 Gomperz, 
Penseurs, I, p. 297. 



THE HELLENIC PERIOD 51 

is also the love of the profession.’”’ These recommenda- 
tions are the more significant, because in the absence 
of all supervision by the State, they formed the only 
official rule for the practice of medicine. They are 
taken from a collection of writings which bear the 
name of Hippocrates, but were certainly not all written 
by him. In fact these writings form a very varied 
collection ; they contain fragments from the school of 
Cnidus, which was on many points in opposition to that 
of Cos ; in them there are also observations of the sick, 
noted day by day, which were never intended to be 
made public; and violent criticisms against super- 
naturalism and mystical arithmetic. For example, in 
a manuscript entitled : On ancient medicine, the author 
holds up to derision those who postulate arbitrarily a 
single primary cause and pretend to explain all maladies 
by heat or cold, moisture or dryness. Such a pro- 
ceeding is excusable in the speculations of philosophers, 
but when health and life are at stake, it is inadmissible. 
Every substance that gives out heat possesses special 
properties, which act very differently on man; it is 
these different effects which must be known in each 
particular case. General theories, such as those of 
Empedocles, belong to philosophy, they have no value 
in medical science. Doubtless the physician must 
strive after a knowledge of nature, but in detail. This 
aim can never be attained by empty speculations ; 
experience and observation of individual cases alone 
are fruitful. But the task is hard, most physicians are 
like inexperienced pilots, who know how to navigate 
in calm weather, but whose incapability is revealed 
by the tempest at the cost of a shipwreck. Fortun- 
ately, slight maladies are more common than serious 
ones, in which any mistake has swift and fatal conse- 

quences.} 
The Collection of Observations shows us the con- 

115 Heiberg, Naturwiss., p. 15. 
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scientious physician noting every day the state of 

his patient, practising “ his art with reflection,’ and 
hating empty hypotheses. Elsewhere, the author of 
the fragment entitled : On the Sacred Disease (epilepsy) 
pours scorn on those who attribute its cause to a 
Divinity, Hera, Poseidon or Ares. Epilepsy is not a 
more sacred disease than any other, for it is due to 
the same natural causes. All is equally human and 
divine in the reality which contains nothing miraculous 
or mythical. Mental diseases, like all others, must be 
treated by a suitable regimen. Together with these 
general considerations, the Hippocratic writings con- 
tain more definite theories, but these are ofttimes 
contradictory. It is difficult, in particular, to know 
exactly what principles of medicine were taught by 
HIPPOCRATES (460-350 B.c.). One thing is certain, 
that he, more than any other, helped to base medical 

science on observation and experience, and to free it 
from rash philosophical speculations. He was more- 
over a remarkable surgeon. Littré has reconstructed 
his doctrine as follows: Hippocrates starts from the 
principle that there is no other internal force in the 
human body but its natural heat. Hence the essential 
cause of diseases must be looked for in the changes 
of the seasons which affect the human constitution. 
The air also plays an important part. Diet is less 
important because its errors only produce individual 
diseases. The pathogeny of Hippocrates is purely 
humoral, it has its roots in the pre-Socratic philosophy 
and draws its inspiration from Alcmaeon. Perfect 
health corresponds to a perfect equilibrium in the 
proportion and qualities of the four radical humours : 
blood, phlegm or pituite, yellow bile and black bile. 
Illness arises from the superabundance, alteration or 
displacement of one of these humours. In an unhealthy 
state, these may collect and be expelled (there is then 
a crisis). If the evacuation be incomplete congestion 
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and gangrene result. The crisis of the disease can be 
foreseen, and the skill of the physician consists in 
giving it a favourable turn. All the followers of 
Hippocrates agree on the importance of prognosis and 
diagnosis. The urine, salts, perspiration, respiration, 
sleep, temperature, etc., must be examined, and also 

the body as a whole. “It is not difficult to recognize 
the state of health of a man seen naked on the 
palaestra.’’ Hence there are descriptions of the pro- 
gress of disease, the accuracy of which is becoming 
recognized more and more by modern science. For 
example, Littré, for a long time, was unable to identify 
one of the epidemics mentioned in the Hippocratic 
writings, which, after having affected the throat, 
leaves traces of paralysis. He could do so, however, 
when in 1860 it was recognized by English and French 
doctors that this results from a form of diphtheria.} 

In therapeutics, the school of Cos seems to have 
recommended regimens, rather than the remedies used 
by the school of Cnidus, which chiefly consisted of 
herbal decoctions. 

As to anatomy, it progressed as far as was possible . 
at a time when only the dissection of animals was 
sanctioned. The Hippocratists were acquainted with 
the general structure of the skeleton and the heart ; 
they distinguished between the veins (conducting 
channels of the blood) and the arteries which, accord- 

ing to them, contained air. They knew nothing of 
the nervous system. Hippocrates, however, places the 
seat of intelligence in the brain, but this knowledge, 
inherited from Alcmaeon, was afterwards lost and had 
to be re-discovered by science. The treatment of 
fractures and sprains was described in a manner which 
is remarkable, but not so surprising, when one remem- 
bers the part played by gymnastics in Greece. In 
surgery, the Hippocratists were not afraid to perform 

1145 Heiberg, Naturwiss., p. 18. 
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trepanning, and they describe the operations with great 
skill. They are cautious in recommending amputations 
because the only means known to them for stopping the 
flow of blood was a red-hot iron. When surgical 
intervention is possible ‘‘ the patient must cry out to 
facilitate the operation.”” But for the amputation of 
a doomed limb, it was necessary to wait until the 
gangrene reached a joint. From all the preceding facts 
we can see to what wealth and precision of knowledge 
the Hippocratic writings bear witness. From ancient 
times they have been the subject of many commentaries 
the most important, the greater part of which is unfor- 
tunately lost, being that of Galen (second century 
A.D.). 

Amongst the immediate successors of Hippocrates 
must be mentioned PRAxAGORAS of Cos and DIOCLES 
of Carystus. The latter has left precise and detailed 
prescriptions of hygiene to be followed from morning 
to evening, according to the seasons. However, the 
methods recommended by Hippocrates and his disciples 
were far from gaining universal adherence. The votive 
tablets found at Epidaurus betray a totally different 
mentality by the accounts of cures which they give. 
A woman, for example, remained pregnant for five 
years, then after a sojourn in the temple, gave birth to 
a boy, who by himself bathed in the stream and then 
began to frolic round his mother. 

6. THE EXACT SCIENCES IN THE FIFTH AND 
FOURTH CENTURIES B.C. THE SCHOOLS OF 
ATHENS AND CYZICUS 

The mathematical and astronomical writings of this 
period have not been preserved, but we can reconstruct 
them in some measure from the testimony of subse- 
quent writers. Arithmetical researches were carried on 
along the mystical path opened up by the Pythagor- 
eans, but did not attain to any remarkable results. 
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Geometry, on the contrary, made rapid progress. 
THEopoRUS of Cyrene enunciated the problem of 

the incommensurables V3, V5, etc., up to V17 
(Plato, Theaetetus,147,D). Three problems especially 
attracted attention, for although they present them- 
selves as the natural generalization from simple 
geometrical constructions, yet they cannot be directly 
solved by the means of the rule and compass. These 
three problems, fa- 
mous in the history 
of mathematics, 
are: the trisection 
of the angle, the 
quadrature of the 
circle, the duplica- 
tion of the cube.} 
They gave rise to 
numerous and fruit- 
ful investigations, 
and gradually led 
to the theory of 
conic sections. The 
primary impulse 
was given by the 
sophists. HIPPIas Fic. 5. 
of Elis first dis- 
covered the curve called the quadratrix. This 
curve (Fig. 5) is obtained by the intersection of 
the moving radius of a circle and a straight line which 

1 The duplication of the cube is also called the Deliac prob- 
lem, Apollo, having been consulted about the plague which 
ravaged Athens in 430 B.c., directed that, in order to end it, 
the volume of the altar of Delos, which was cubical, should be 

doubled. The Athenians thought to do this by simply doub- 
ling the sides of the altar; but, the scourge having redoubled, 
they recognized their error and applied to Plato. Arvstotelis 
opera, IV, p. 209, scholies de Philipon aux Analytiques pos- 
térieures. 

5 
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moves parallel to itself from BC to OA in the same time 

as the radius moves from OB to OA. The curve 

can be constructed by successive divisions of the arc 

BA and the straight line BO. This being done, it is 
enough to divide BO into three parts, to obtain the 
trisection sought. (Proclus, Comm. Euel. I, p. 356, 

Iz and p. 272, 7; Pappus, 1, p. 253). - Fromuang 
analytical point of view the equation of the quadratrix 
is the natural result of the following equation in which 
vy is the radius vector of the quadratrix, a the radius 

of the circle, and 6 the angle AOR. 

6 yvsmné@ 
We have - = 

LA a 

2 

hence av = 2a0 cosec 0 

The authenticity of the discovery of Hippias has 
often been disputed; P. Tannery, however, after 
detailed discussion, upholds it.} 

Another sophist, ANTIPHON, likens the ultimate 
elements of the curved line to those of the straight line, 
and he attempts to solve problems by regarding the 
circle as the limit of a polygon with an infinite number 
of sides. Bryson of Heraclea takes this conception 
and completes it by considering at the same time 
inscribed and circumscribed polygons. But these two 
sophists appear to have postulated that there is no 
real difference between the straight line and the curve 
(Simplicius: Diels, Vor. II, 594) and for this reason 
their solutions, which might have been a guiding light, 
remain doubtful, the more so because they bring in 
the notion of infinity. The disputations aroused by 
this subject became so popular that Aristophanes 
directly alludes to them (Birds, act II, scene vi). 
“These, said the astronomer Meton, are instruments 

728 Tannery, Mem. scientifiques, II, p. 1. 



THE HELLENIC PERIOD 57 

for measuring the air. For you must know that the 
air is formed like an oven. This is why applying the 
top of this curved rule, then placing the compass, 
I shall use a straight rule and I shall take my dimen- 
sions so well that I shall make a squared circle.” 
This METon, whom Aristophanes introduces, seems to 
have been a good astronomer. He rediscovered the 
so-called cycle of Saros, which henceforward bore his 
name, and which helped to reform the calendar and 
fix religious rites. A short time after the sophists, 
there appeared the works of the schools of Athens 
and Cnidus, which were so closely united that it is 
difficult to separate them. According to tradition 
Hippocrates, Plato, and Theaetetus belong to the 
school of Athens, whilst Eudoxus, Menaechmus and 
Aristo represent that of Cnidus. 

HippocraTes of Chios was born in 470 B.C. 
Despoiled of his wealth by the Athenian customs, 
according to Eudemus, by pirates, according to 
Philoponus (Diels, Vor. I, p. 231, 27, 30) he came to 
Athens to beg for justice and the recovery of his 
property. Having been unable to gain his cause, he 
devoted himself to philosophy and opened a school 
of geometry. He was the first to compile a treatise of 
geometry, thus breaking away from the Pythagorean 
tradition, which kept secret all mathematical know- 
ledge ; hereby he provided a solid basis for instruction 
and foreshadowed the Elements of Euclid. He also 
introduced the use of letters to indicate lines and 
figures, and it was really he who created the geometry 
of the circle by means of the two following propositions : 
Circles are to one another in the ratio of the squares 
of their diameters. Similar segments are to one 
another in the ratio of the squares of their chords. 

Hippocrates also recognized that the duplication of 
the cube leads to the investigation of mean pro~- 
portionals : 
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Then we have x? =ay; y? = xb, hence x4 =axb 

and x3 =a. Now if we put 6 = 2a we obtain 
x3 — 2a%, which is the solution required. 

The quadrature of the circle is, as we know, an 

insoluble geometrical problem. In attempting to 
solve it, Hippocrates was led to several interesting 
discoveries on lunes. He found, for example, that 
the lune AECD (Fig. 6) is equal to half the right- 

Hie. 6. 

angled triangle ACB. In order to prove it, it is 
sufficient to notice that the semi-circle constructed on 
the hypotenuse BC is equal in area to the two semi- 
circles constructed on the sides BA and AC which, by 
hypothesis, are equal. If we take away the common 
parts of the semi-circles (small and large) we obtain the 
required equality. Having thus demonstrated that 
a surface bounded by curvi-linear elements is equal 
to a surface limited by straight lines, Hippocrates 
thought it was possible to find a square equal to a 

+23 Rouse Ball, History of Mathematics, I, p. 42. 
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circle. Without labouring the point, we see how 
fruitful the work of this geometrician was. 
ArcuyTas of Tarentum followed it up in the dupli- 

cation of the cube; he pointed out a very elegant 
method of discovering the mean proportionals, a 
method which implies a very clear understanding of 
“ geometrical loci.’”’ According to Archytas the two 
mean proportionals sought are obtained by the inter- 
section of the three following surfaces : 
the cylinder x? + y? = ax 

a 

the cone #7 + y? +22 = ae 

the tore or anchor-ring (%? + y? + 22)? = a? (x? + y%) 
this latter being produced by the revolution of a circle 
around one of its tangents.1 

As for PLATO (427-347 B.c.) we know the value he 
attached to mathematics. He borrowed from it the 
basis of his idealism, since mathematical demonstration 
cannot be based upon the observations of sensible 
phenomena, for Nature displays only imperfect figures. 
On the other hand, this demonstration could not be 
arbitrarily created by the mind. There exists there- 
fore beyond the realm of sensible perception a realm 
of ideas of which our minds gradually become aware. 
Thus scepticism and sensualism are checked. Without 
making any real discoveries, Plato has defined the 
conditions of mathematical research. He insists on 
the necessity of reducing axioms and definitions to 
the smallest number possible. He distinguishes be- 
tween the analytical method by which one can ascer- 
tain if the problem be solvable or not, and the synthetic 
method by which the solutions are worked out. In 
this way Plato rendered invaluable service as much in 
the research of primary propositions as in the con- 
struction of geometrical figures. His advice led to a 

128 Tannery, Mém. sci., II, p. 19. 
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revision of the treatise of geometry, written by Hippo- 

crates. This revision was made first by LEon, and 

then by TuEeupius of Magnesia, both pupils of the 

Academy (Proclus, Comm. Eucl. I, pp. 66, 20; 67, 

12). The trend given by Plato to astronomy was no 
less important. His harmonious vision of the world 
impelled him to the opinion that the irregular move- 
ments of the planets were unreal; preserving the 
Pythagorean axiom of circular movement, he assigned 
to astronomy the task of finding a combination of 
circular movements which would account for the 
apparent irregularity of the motion of the planets 
(o@6 ew Ta yay pera). 

Evupoxus of Cnidus, a contemporary of Plato, was 
a great geometrician as well as an astronomer. Born 
in 408 B.c., he studied under Archytas at Tarentum, 
then he settled with his disciples at Cyzicus, which he 
left for a time to live in Athens. He discovered 
almost the whole of the contents of Book V of Euclid, 
on proportions, and obtained these results by extend- 
ing the notion of proportionality so as to include all 
rational and irrational magnitudes. He postulates that 

- = 5 if ma=nb at the same time as mc=nd (m 

and m being numbers chosen arbitrarily and a, }, c, d, 
any magnitudes). On these foundations he established 
the basis of the method of exhaustion, so brilliantly 
developed by Archimedes, and which has for its com- 
plement the reduction to absurdity. To conform to 
the outline of astronomy sketched by Plato, he con- 
ceived a system of homocentric spheres, the essential 
features of which were conserved by Aristotle. It was 
Eudoxus also who compiled the catalogue of stars, 
used in the third century B.c. by Aratus in his poetic 
description of the starry sky; and it was he who 
estimated the circumference of the earth to be 400,000 
stadia, a value which was accepted by Aristotle. His 
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disciple Menaechmus was equally remarkable. The 
tutor of Alexander the Great, he replied to a question 
of his royal pupil by saying that there are no royal 
roads in geometry.1 Following the suggestions of 
Archytas, he resolved the problem of the duplication 
of the cube by finding the point of intersection of either 
the two parabolas x? = ay, y* = 2ax, or the parabola 
~%* = ay and the hyperbola xy = 2a%. These equations 
result directly from the mean proportionals enunciated 
by Archytas and Hippocrates. 

CE te 

xX yy 2a 
Menaechmus may have shown besides that these curves 
can be obtained by the intersection of a plane and a 
cone of revolution, and thus opened up the way for the 
theory of conic sections. 

7. ARISTOTLE AND THE PERIPATETIC 
SCHOOL. THE NATURAL SCIENCES 

ARISTOTLE (384-322 B.C.) directed the study of 
science into new paths. The son of a physician, he 
was as much interested in natural science and inductive 
methods as in metaphysics and exact science. He was 
at first a disciple of Plato, but he left the Academy after 
the death of his master. The writings he has left are 
valuable and varied. The greater part have come down 
to us in the form of notes written for an oral exposition, 
and they constitute a veritable encyclopedia of the 
knowledge of the period. But Aristotle not only col- 
lected, systematized, and discussed the opinions of his 
predecessors and contemporaries, he created entirely 
new systems such as logic, morphology, and biological 
classifications. It must be noted, however, that 
although he had sufficient mastery of elementary 
mathematics to use them as illustrations of his logic, 

1 This saying is also attributed to Euclid, 
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he does not appear to have understood the interest of 

higher mathematics. The ideas of function, and of 

geometrical loci were unknown to him; on this point 

he was inferior to Plato.1 With the help of the 

astronomer Calippus, Aristotle attempted to perfect 
the system of Eudoxus by introducing compensating 
spheres so as to give solidarity to the movements of 
the planets and of the celestial vault. He was also 
interested in meteorological phenomena. In his eyes 
it is heat which plays the most important part; it 
contributes to the formation of comets, the Milky Way, 
clouds, winds, etc. The rainbow is only a phenomena 
of reflection, the droplets of the cloud acting as mirrors 
to the sunlight. (Meteor., Bk. III, ch. iv.; 373 to 
32.) Aristotle approaches physics as a theorist and 
a metaphysician; he discusses carefully ideas of 
place, motion, etc., but very often interprets pheno- 
mena erroneously, although he was on the point 
of discovering specific gravity. With Plato, he adds 
to the four known elements a fifth, the quintessence. 

By his ideas, he has, up to a certain point, impeded 
the progress of physics ; on the other hand he exercised 
a happy influence on the evolution of alchemy and 
consequently of chemistry. The collection of writings 
entitled Problems shows us the extent and variety of 
the instruction which was given in the Peripatetic 
School, for it deals with medicine, physiology, mathe- 

matics, optics, music, philology, etc. In this collec- 
tion the mechanical problems are particularly remark- 
able, because side by side with palpable errors there 
are glimpses of the most important laws of mechanics 
(the principle of virtual velocities, parallelogram of 
forces, law of inertia, use of tackle). The influence of 
the investigations of Archytas can be seen here.? But, 
as we have already remarked, Aristotle was, before all, 

121 Milhaud, Etudes, p. tor et seq. 
*15 Heiberg, Naturwiss., p. 35. 
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a biologist. It may even be maintained that his 
system of logic, in so far as it deals with the classifica- 
tion of the real, is fundamentally biological. It is 
especially in the natural sciences that Aristotle displays 
his predominant qualities, creative genius, power of 
observation, faculty of discovering and comprehending 
analogies, finalistic interpretation of phenomena. Not 
content with co-ordinating and explaining the work of 
his predecessors, Aristotle was the creator of scientific 
zoology and comparative anatomy. He classified 
animals with remarkable accuracy, placing, for example, 
the whale amongst mammals, contrary to the current 
opinion of his time. His two works entitled De 
partibus animalium and De generatione animalium 
abound in observations and analogical reasonings of 
great exactitude. This is all the more surprising in 
view of the fact that Aristotle had none of the modern 
scientific apparatus, the microscope in particular. 
Such results are only obtained by dint of patience and 
ingenuity. Aristotle drew his information from fisher- 
men, hunters, shepherds, etc., but he checked it care- 
fully. He observed, analysed, and verified. By a 

method fundamentally inductive and empirical, he 
purposely, in this branch of science, puts aside philoso- 
phical speculation. Doubtless, he sometimes drew too 
hasty conclusions, and misunderstood the discoveries 
of his predecessors, especially in medical science ; but 
in general he has the great merit of taking into con- 
sideration the opinions of all those who preceded him, 
and thus became the creator of the historical method. 

His work was carried on by his disciples. THEO- 
PHRASTUS, whose characters were imitated by La 
Bruyére, has left us a very valuable book containing 
the opinions of the ancient natural philosophers. 
MENON wrote the history of medicine; EuDEMUs, 
that of astronomy and mathematics; ARISTOXENUS, 

17 L. Brunschvicg, Les Etapes, p. 72. 
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that of music. The work of Theophrastus is of special 
importance, not only for the information it contains, 
but also for its criticisms. Besides natural philosophy, 
it comprises a treatise on the sensations, and another 

on botany, both full of accurate and extensive observa- 
tions. According to Heiberg, the most praiseworthy 
result of the knowledge and methods of the Aristotelian 
school in zoology and botany, was the description and 
classification of the hitherto unknown specimens of 
fauna and flora brought back from the expedition of 
Alexander the Great to India.1 

In another realm of science, the ethnographical 
descriptions of ARISTOBULUS, the geographical descrip- 
tion of the southern coast by NEARCHUS, the systematic 
treatise on geography by DiIcEARCHUS, a disciple of 
Theophrastus and an author much esteemed by 
Cicero, are all worthy of mention. The two short 
writings of AuToLycus (spherical geometry applied to 
astronomy) are noteworthy as being the most ancient 
works on exact sciences which have come down to us. 
HERACLIDES of Pontus, the friend and contemporary 
of Aristotle, also studied Astronomy ; he invented an 
ingenious heliocentric system, and contrary to the 
opinion of Aristotle, maintained the infinity of the 

universe. STRATO of Lampsacus is renowned for his 
works on physics; he opposed Democritus’ theory of 
empty continuous space, although he admits, on the 
ground of experience, the existence of small empty 
spaces distributed discontinuously in the interior of 
bodies.® 

115 Heiberg, Naturwiss., p. 38. 
* The ideas of Heraclides of Pontus have been preserved 

by the Jew Chalcidius, who in the fourth century of our era 
wrote a commentary on the “‘ Timaeus ”’ of Plato. Doublet, 
Histoive de V'astronomie, p. 126. 
> G. Rodier, La Physique de Straton de Lampsaque, Alcan, 

1890. 



CHAPTER II 

THE ALEXANDRIAN PERIOD 

(from 300 B.c. to the first century of the Christian Era) 

F the conquests of Alexander the Great caused 
| Greek language and science to penetrate into the 

East, they also brought about an upheaval of 
existing conditions. Greece lost her creative originality 
at the same time as her political autonomy. Athens 
certainly remained the seat of the philosophical schools, 
but in reality other towns, foremost amongst them 
Alexandria, became the centres of intellectual life. 
This now changed its character ; instead of, as in the 
past, spreading through small democratic states, it 
concentrated in the capitals of the kingdoms which 
arose on the ruins of Alexander’s empire, and hence 
was confined to smaller and smaller circles, for in spite 
of its diffusion, the Greek language, with its charac- 
teristic syntax and vocabulary, remained an unknown 
tongue to the masses of Asia Minor and Egypt. The 
classical works of Greece could only be appreciated by 
the chosen few. This state of affairs was unfavourable 
for literary and philosophical production. The latter, 
when it is intended for only a small circle of readers, 
is no longer animated by popular inspiration, and loses 
itself in subtlety, affectation and erudition.! But for 
the sciences properly so called, these conditions were 
very advantageous. Owing to the diffusion of Greek 
culture throughout the eastern littoral of the Mediter- 
ranean, specialists were sure to meet with savants 

115 Heiberg, Naturwiss., p. 42. 
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capable of understanding them ; thanks to the muni- 

ficence of princes, they had at their disposal the neces- 

sary resources for their work, and the wise administra- 
tion of the kingdom secured to them the peace of mind 
needful for their meditations. Such peace and material 
independence could not be offered by the little demo- 
cratic states of Greece, always a prey to revolutions. 

The Ptolemaic dynasty is especially noteworthy for 
its intelligent initiative in establishing Alexandria as 
the new and indisputable centre of Hellenic culture. 
The founder of this dynasty summoned to him 
Demetrius of Phalerus and Strato of Lampsacus, both 
representatives of science and the Aristotelian tradition; 
but it was his son Ptolemy II (Philadelphus), who, 
like the American millionaires of to-day, founded a 
museum where savants were generously supported on 
the sole condition of furthering science. He also 
established two great libraries of which Aristotle’s 
works formed the nucleus, and which 50 years after 
their foundation, contained more than 600,000 manu- 
scripts. In addition to this there was an active trade 
in manuscripts, favoured by the fact that Egypt 
possessed the monopoly of papyrus. Thanks to these 
exceptional conditions, Alexandria quickly became the 
refuge of students and professors, and even kept in 
touch with foreign savants. Thus the sciences in all 
departments made rapid progress, and reached their 
zenith in the third century B.c. 

1. MATHEMATICS, PHYSICS, AND MECHANICS 

The mathematics of this period are represented by 
three great names, which dominate antiquity : Euclid, 
Archimedes, and Apollonius. Of Eucrip (330-270 
B.C.) we know little except that he was called by 
Ptolemy Soter to teach mathematics in Alexandria. 
It was there that he wrote the Elements which made 
him famous, and which, translated almost literally, 
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have been used in English schools until these latter 
years. The fame of Euclid was so great that already 
in the Middle Ages his existence was doubted. Accord- 
ing to the commentators of this period, the name of 
Euclid does not belong to a real person but to the book 
itself of the Elements, and signifies the key of geometry 
(jxdt = key, duc = geometry). This hypothesis, it is 
unnecessary to state, is more ingenious than well- 
founded.t Doubtless the Elements were not entirely 
the work of Euclid. He borrowed largely from his 
predecessors, but to him belongs indisputably the merit 
of having developed and co-ordinated into a faultless 
logic all the geometrical work accomplished before him. 
He has brought into relief the essentially rational 
character of geometry, and has shown that, certain 
principles being postulated, the sequence of mathe- 
matical propositions unfolds itself in an irresistible 
manner. His method is synthetic, proceeding from 
the simple to the complex, i.e. starting from the most 
elementary figures to reach the most complicated.? 
Modern analysis proceeds in a different manner. For 
example, to study the curves of the second degree, it 
begins by assuming the general equation of conics, 
then by successive limitations determines the circle, 
ellipse, parabola, etc. 

The Elements comprise thirteen books, each of which 
is prefaced by definitions of the meaning, use and 
limits of the concepts employed. The first book also 
contains five postulates and five axioms which, added 
to the definitions, are intended to secure the logical 
construction of the whole edifice. In this anxiety to 
distinguish rigorously the nature of the fundamental 
propositions, we see the effect of the Platonic investiga- 
tions on the foundations of mathematics. This order, 
adopted by Euclid, has been often criticized even by the 

123 Rouse Bail, History of Mathematics, I, p. 55. 
229 Zeuthen, Histoive des mathématiques, p. 93. 
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Ancients, but modern researches have justified it. 

Even the famous postulate concerning parallels has 

been recognized for what it was in Euclid’s conception, 
i.e. a proposition which establishes the existence of a 
point of intersection between two straight lines, if the 

sum of the interior angles formed by these lines and 
a line which cuts them be less than z. The four other 
postulates are for the purpose of establishing the exist- 
ence and unity of the elements needed for geometrical 
constructions since these cannot be rigorously demon- 
strated. The only purpose of the axioms is to set forth 
as briefly and completely as possible the conditions of 
equality and inequality of geometrical magnitudes. 
These foundations once established, the geometrical 
edifice can be constructed theorem by theorem without 
any appeal to intuition. 

The books which form the Elements are divided 
according to their contents as follows : I, straight lines, 
triangles, parallelograms, the theorem of Pythagoras ; 
II, geometrical algebra; III the circle, angles; IV, 
inscribed and circumscribed polygons. These four 
books were certainly borrowed from the Pythagorean 
teaching, for they avoid the use of proportions even 
when it would be most natural.! Book V, which treats 
of proportions, is entirely inspired by the works of 
Eudoxus. Book VI treats of the similitude of figures. 
Books VII-IX make use of the works of Theaetetus 
and treat of rational numbers, progressions, and con- 
tinuous proportions. As to Book X (incommensurable 
quantities) it appears to be entirely the work of Euclid. 
In dealing with these questions, he uses the graphical 
method, which consists in representing numbers by 
lines, and has the advantage of providing demonstra- 
tions applicable to all numbers, rational or irrational. 
Books XI-XIII treat of geometry in space and are 
inspired by Pythagoras and Plato ; they are less finished 

126 Tannery, Géom. grecque, p. 98. 
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than the others, having been left in the experimental 
stage. For example, congruency and symmetry are 
not clearly distinguished and in the chain of proofs 
there is sometimes a break. As a whole the Elements 
display faults of method and detail which we shall 
have to examine later, but they remain nevertheless an 
admirable work, whose solidity and success have been 
proved by the succession of editions through the 
centuries from antiquity to the Middle Ages and from 
the Renaissance to our own times.! 

Besides the Elements, Euclid has left a collection of 
Data, the aim of which was to facilitate the analytical 
study of theorems. The contents of this work are the 
same as that of the first six books of the Elements, but 
the enunciation of the propositions is stated in the 
form of conditions according to which a geometrical 
figure is given or rather determined. For example, 
“if two lines enclose a given space and form with each 
other a given angle, and if their sum be given, then 
each of these lines will be given ”’ (prop. 85). Another 
collection, the Porisms, had a similar purpose; it 
showed what figures could be constructed, certain 
conditions being given. This work is unfortunately 
lost ; several savants have attempted to reconstruct it 
from some imperfect texts of Pappus, but all these 
attempts (including that of Chasles) have been un- 
successful.2 Two other works also have been lost. 
The first treats of Surfaces as Geometrical Loci; the 
second, inspired by the works of Menaechmus and 
Aristo, gave the Elements of Conic Sections. The latter 
was soon supplanted by the works of Apollonius, but 
it has been possible to partially reconstruct it. No 
vestige remains of the work entitled Fallacies. We 

1 For the history of these editions, see 17 Loria, Sczenze 
esatte, p. 190 et seq., and 6 Boyer, Histoive des Mathématiques, 
Da2z9.% 

217 Loria, Scienze esatte, p. 259 et seq. 



70 SCIENCE IN GRECO-ROMAN ANTIQUITY 

can only suppose it to have been modelled after the 
type of the ‘ Sophistical arguments” of Aristotle, 
and to have contained historical comments of great 
interest. Another dissertation, of which only the 
Arabic version has come down to us, entitled the 
Division of Figures, shows how triangles, quadrilaterals, 
and circles can be divided into equal parts, or according 
to a certain ratio.1 

Finally Euclid composed books on optics (or per- 
spective), astronomy and mathematical acoustics, all 
with a view to teaching. By his didactic methods, 
Euclid differs essentially from Archimedes, whose 
creative genius ranks him amongst the greatest mathe- 
maticians of all times. 
ARCHIMEDES (257-212 B.C.) was born at Syracuse,? 

and was on intimate terms with, if not related to, 
King Hiero. It was to Gelo, the son of Hiero, that he 
addressed the curious problem of the Arenarius, relat- 
ing to the number of grains of sand which could be 
contained in the universe. In spite of the advantages 
offered by Alexandria, he preferred to live in his own 
country, to which he was much attached. In his 
writings, for instance, he uses the local dialect rather 
than the common speech, thus showing his patriotism 
and independence of character. It was especially 
during the siege of Syracuse that he applied his talents 
to the service of his country. By his wonderful 
inventions, he held in check the Roman armies and 
fleet, commanded by Marcellus. Polybius (bk. VIII, 

fgmt. iv), Livy (bk. XXIV, ch. 34), and Plutarch have 
left us an account of these inventions, but they pass 

over in silence the burning of the ships by means of 

115 Heiberg, Naturwiss., p. 50. 
* For a critical study of the life and works of Archimedes, 

consult P. ver Eecke, Les Ceuvres complétes d’ Archiméde, 
Paris, 1921; T. L. Heath, The Works of Archimedes, Cam- 
bridge, 1897. 
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a circular arrangement of mirrors. This feat was 
related for the first time by Lucius of Samosatus in 
the second century, so it is open to question, although 
Buffon has demonstrated its physical possibility. It 
is well known how at the fall of Syracuse, Archimedes 
was brutally slain by a soldier, contrary to the express 
desire of Marcellus, and how his tomb was discovered 
by Cicero many years after (Iusculanes, Bk. V, ch. 23). 
According to his own testimony (Heiberg edition, 
II, p. 248, 8) Archimedes was initiated to astronomy 
by his father Pheidias; he afterwards had Conon as 
his friend and fellow-student, and showed himself 
unrivalled in the construction of astronomical instru- 
ments. He constructed two planetaria, which were 
taken to Rome after the fall of Syracuse. One was 
placed in the temple of Victory, the other was pre- 
served by the family of Marcellus, and was admired 
by Cicero, who speaks of it in the following terms: 
“What is most to be admired in the invention of 
Archimedes is that he was able with a single motor 
to reproduce all the unequal and different movements 
of the heavenly bodies” (Repub., I, ch. 14). In 
another field, the pursuit of astronomy certainly 
led Archimedes to the study of catoptrics (laws of 
reflection), and to the creation of an ingenious system 
of numeration by which numbers of any desired 
magnitude can be expressed. After having benefited 
by his father’s teaching, Archimedes, as Diodorus of 
Sicily relates, must have sojourned for some time in 
Egypt, or he would not have brought out his works 
in Alexandria, dedicating them to Eratosthenes, 
Conon and Dositheus, who lived in that city. During 
that sojourn he must have had some painful experi- 
ences with certain pedantic professors, for speaking 
of some problems propounded by Conon, the solution 
of which was impossible, he says this: ‘‘ Those who 
pretend to have discovered them all, without pro- 

6 
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ducing any proof, are convicted of imposture since 
they boast of having found a demonstration which is 
in fact impossible” (Heiberg edition, II, p. 5). It 
was likewise in Egypt, if Diodorus of Sicily is to be 
believed, that Archimedes discovered the screw which 
bears his name, called also a snail or spiral pump. 
This pump consists of a tube open at both ends and 
twisted like a corkscrew. When inclined to the 
vertical and rotated on its axis, it raises the water 
in which its lower extremity is immersed. It is 
doubtful, however, whether such an apparatus had 
not been used in Egypt before the time of Archimedes. 
Similarly it is not known exactly by what means 
Archimedes launched the huge ship which Hiero had 
had built, and which the Syracusans could not move 
from the slipway (Proclus, Comm., Eucl., I, p. 63, 19). 
According to Plutarch the machinery used was com- 
posed of cords and pulleys, but the use of tackle had 
been known from the time of Archytas. It is more 
probable that it was an endless screw, working a 

system of toothed wheels.1 However this may be, 
it was through meditating on the construction of 
these engines that Archimedes was led to formulate 
the exact laws of mechanics. The task which he 
assigns to this science, namely, “to move a given 
weight by a given force,” is only the theoretical trans- 
lation of the famous saying, ‘“‘ Give me but a place to 
stand on and I will move the earth,” which he uttered 
at the time of the launching of the vessel, the difficul- 
ties of which have been referred to. For this reason 
it is very likely that the writings by which Archimedes 
established the basis of rational mechanics (at least as 
far as statics is concerned) belong to the first years 
of his scientific activity. Perhaps it was also at this 
time that he discovered the infinitesimal method of 
integration, based on mechanics, which he used together 

1 Ver Eecke, work quoted, p. xiii. 
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with the method of exhaustion to determine surfaces 
and volumes. Of his works, we only possess the 
following : On the Sphere and Cylinder, an enunciation 
of five postulates, which, in the absence of any con- 

sideration of mathematical infinity, allow of the 
demonstration of the problems proposed: area of the 
sphere equal to that of four great circles; ratio of the 
surface and volume of the sphere to those of the cylinder 
circumscribed to it ; sphere equal in volume to a given 
cone or cylinder; spherical segments. Several pro- 
positions remain obscure because Archimedes, address- 
ing the savants of his period, takes these for granted. 
It was to remove these obscurities that Eutocrius 
wrote his Commentary, which is full of valuable 
historical information, On the Measurement of the Circle. 
A circle is equal to a right-angled triangle of which 
one of the sides of the right-angle is equal to the radius, 
the other to the circumference of the circle, i.e. 

pe 
2 

Then the theorem which proves that the ratio of the 
circumference to the diameter lies between 

ro and 37. 
On Conoids and Spheroids. In this work, the curves 

of the second degree are defined by means of a plane 
section taken perpendicularly to the generatrix of a 
right cone. According as this cone is right-angled, 
obtuse-angled or acute-angled, a parabola, a hyperbola, 
or an ellipse is obtained. These curves, by revolution 
round their axes, generate what Archimedes calls a 
right-angled conoid (paraboloid of revolution), an 
obtuse-angled conoid (hyperboloid of revolution) and 
elongated or flattened spheroids (ellipsoids of revolu- 
ion) (Fig. 7). 
Amongst the results found by Archimedes, the 

following may be mentioned: The segment of the 
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paraboloid of revolution is equal to one and a half times 
the cone having the same base and axis as this segment. 
Two segments cut off from a paraboloid of revolution 

Acute 

angle Right angle 

Parabola Ellipse 

Obtuse 

angle 

Fie. 7. 

by any planes are to each other as the squares of their 
axes. To prove these demonstrations Archimedes 
uses the method of exhaustion, which consists in 
limiting the quantity sought between two known 
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quantities whose difference may be less than any 
given quantity. 

The work On Spirals contains the study of the curve 
to which Archimedes has given his name, and which is 
described by a radius vector 7 increasing uniformly with 
the vectorial angle 0: 7 = cO, c being a constant. 

The writing entitled On the Equilibrium of Planes 
or The Centres of Gravity of Planes is composed of two 
books. The first one begins by establishing the theory 
of the equilibrium of the lever, then enunciates and 
demonstrates various theorems relating to the centres 
of gravity of the parallelogram, triangle, and recti- 
linear trapezium. The second treats of the deter- 
mination of the centre of gravity of a parabolic seg- 
ment. The Avenarius is one of the most valuable 
documents we possess on the astronomy and system 
of numeration of the Greeks; amongst other things 
it contains a description of the heliocentric system of 
Aristarchus of Samos (Heiberg edition, II, p. 244, 12). 
To calculate numbers of any desired magnitude, 
Archimedes makes use of progressions, one arithmetical, 

the other geometrical, the former being used to find 
any term of the latter. On the Quadrature of the 
Parabola estimates the area of the parabola, first 
by means of pure geometry (method of exhaustion), 
then by considerations of equilibrium (infinitesimal 
mechanical method). The treatise On Floating Bodtes 
establishes the fundamental laws of hydrostatics ; the 
state of equilibrium of a liquid; the position of equi- 
librium of a solid immersed in a liquid according to 
the ratio of its density to that of this liquid. Accord- 
ing to a legend related by Vitruvius (Bk. IX, 215, Io) 
Archimedes discovered the laws of hydrostatics whilst 
in his bath, thinking of the crown adulterated by the 
goldsmith of King Hiero. 

The treatise On the Method relating to Mechanical 
Theorems has been recently discovered on a palimpsest 



76 SCIENCE IN GRECO-ROMAN ANTIQUITY 

of Jerusalem. In it new examples of the use of 
infinitesimal mechanical integration are described and 
worked out.! The Lemmas is perhaps an apocry- 
phal work. As to the celebrated Cattle-Problem, it 
was propounded by Archimedes in the form of an 
epigram of forty-seven lines. It relates to the calcu- 
lation of the number of oxen in a herd, being given 
that they are penned in order according to a regular 
figure, and that the animals of different colours occur 
in proportions successively dependent on one another. 
The work of Archimedes is so profound and original 
that we heartily endorse the judgment of Leibnitz : 
“ He who understands Archimedes and Apollonius 
finds less to admire in the inventions of the greatest 
modern scientists.”’ 

APOLLONIUS OF PERGA (260-200 B.C.) is the third 
great mathematician of this period. Pappus repre- 
sents him as vain and always ready to depreciate the 
worth of other geometers (Pappus, Hultsch edition, p. 
678). In reality we do not know much about him, 
except that he was surnamed Epsilon, probably because 
the hall in which he gave his lectures bore the number 
é=5. He taught for several years in Alexandria, 
then in the university of Pergamum which had just 
been founded ; after which he returned to Alexandria, 
where he remained until his death.2. Of his masterly 
work on Conic Sections we only possess the four first 
books in the original Greek, the next three have been 
preserved in an Arabic translation, but the eighth and 
last is entirely lost. These books are dedicated partly 
to Eudemus, partly to Attalus, who is supposed by 
some to be Attalus I, King of Pergamum. In these 
dedications, Apollonius specifies the relation of his own 

1See the articles of Th. Reinach and P. Painlevé in the 
Revue générale des Sciences pures et appliquées, November 30 
and December 15, 1907. 

223 Rouse Ball, History of Mathematics, p. 81. 
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discoveries to those of his predecessors. He shows 
how, in the first four volumes of his work, he has 
generalized and extended the elements of the theory 
already known. The third book enunciates new pro- 
positions which make it possible to solve a problem 
imperfectly treated by Euclid ; the fourth rectifies the 
results of Conon relating to points of contact and inter- 
section of conics. The rest of the work contains 
further developments of the properties of conics and 
their applications.t In fact, what is really new in 
the work of Apollonius is his definition of conic 
sections. Archimedes and Euclid defined these as 
the sections taken perpendicularly to the sides of right 
cones, i.e. cones whose axis is perpendicular to the 
circle of the base, but of which the angle at the 
apex may be a right, obtuse, or acute angle (Fig. 7). 
Apollonius shows that the parabola, hyperbola and 
ellipse can be obtained by sections taken on one and the 
same oblique cone having a circular base. If through 
the axis of this cone we take a plane perpendicular to 
the circle of the base, we obtain the triangle formed by 
the two sides of the cone and the diameter of the base. 
If we now draw a plane perpendicular to the plane of 
this triangle, the sides of this triangle will be cut at 
two points, which will be the vertices of the curve. 
A similar geometrical construction will enable us to 
find a ratio indicating whether this curve or conic 
section is an ellipse, hyperbola or parabola. The 
geometrical constructions of lines and surfaces thus 
play the same part as algebraical equations in analytical 
geometry. But Apollonius not only expounds general 
theories, he applies them to numerous and difficult 
problems, carefully studying their conditions of possi- 
bility. The collections of these problems were for a 
long time in use in the school of Alexandria; after- 
wards they were lost, with the exception of those 

115 Heiberg, Naturwiss., p. 56. 
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preserved in an Arabic translation. In one disserta- 
tion, unfortunately also lost, Apollonius examines the 
Foundations of Mathematics, and the fragments which 
have come down to us witness to his desire to connect 
mathematical concepts with reality, to reduce the 
number of fundamental propositions, and to justify 
their scope in the Elements of Euclid. Probably the 
other works published by Apollonius likewise had the 
aim of taking up again and investigating questions 
already studied by Euclid and Archimedes. For ex- 
ample a short work on Unclassified Incommensurables, 
and another on The Dodecahedron and Icosahedron 
are clearly inspired by Euclid, whilst the investigations 
of the Helicoidal Line, the Contracted Method of Calcu- 
lation, and The Burning Mirrors were suggested 
by Archimedes. A treatise on Contacts of which 
many attempts at reconstruction have been made, 
must also be mentioned. Finally must be noted an 
astronomical treatise on the positions and retro- 
gradations of the planets, which reveals Apollonius 
as the author of the ingenious theory of epicycles.1 

As mathematicians belonging to the Alexandrian 
period, we must mention NICOMEDES, the inventor of 
the conchoid (ry =a sec 6+d), and DioclEs, the 
inventor of the cissoid (y?(2a — x) = «*)—these curves 
being used to solve the trisection of the angle and the 
duplication of the cube; and also GEMINUS, who wrote 
a valuable history of mathematics. 

Whilst mathematics were advancing, practical me- 
chanics also made remarkable progress as more 
and more importance was attached to engines of war 
used in besieging and defending fortified towns. The 
honour of having created the technics of this practical 
mechanics belongs to CTESIBIUS, a contemporary of 
Archimedes, who lived at Alexandria about the middle 
of the third century B.c. He constructed heavy 

115 Heiberg, Naturwiss., p. 58. 
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cannon, which were partly operated by compressed 
air. His works were unfortunately lost, but we find 
their essential features in the Mechanics published by 
his immediate successor PHiro of Byzantium, several 
fragments of whose work have come down to us. 
A general introduction prefaces this most important 
work ; then comes the description of catapults, which 
it has been possible to reconstruct in recent times by 
the aid of the drawings which accompany the descrip- 
tion. The accuracy and long range of these engines 
were a revelation.? Reflections on the art of besieging 
follow, then an accurate account of the theory of the 
lever, further on a description of automata and 
mechanical apparatus intended for use in theatres or 
gardens, such as magic goblets, water-cans pouring 
different liquids as desired, fountains with animals 
drinking and birds singing, etc. Beside these there 
were other more useful apparatus, such as for wash- 
ing automatically the steps of the temples. The 
mechanism of all these machines is based principally 
on the action of levers and compressed air. 

Two centuries later HERO of Alexandria took up the 
work begun by Ctesibius. He probably lived about 
the end of the first century B.c., but the dates of his 
life, death and works are very uncertain. Although 
Hero of Alexandria is more famous in history than 
Ctesibius, his work is far from being of equal originality 
and accuracy. 

From a mathematical point of view it consists of: 
(x1) An elementary geometry, with applications to 

1A, de Rochas, La science des philosophes et Vart des thau- 
maturges, Dorbon, Paris, p. 59. 

2r0 Diels, Antike, p. 92. 
3 J. L. Heiberg and P. Tannery place Hero in the second 

century after Christ, but the majority of historians decide 
in favour of the first century before the Christian Era (17 
Loria, Sc. esatte, p. 583, and W. Schmidt in his introduction 
to the works of Hero). 
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the determination of the areas of fields having a given 
shape ; 
(2) Propositions on the method of calculating the 

volumes of certain solids, with applications to buildings 
used as theatres, baths, banqueting-halls, etc. 

(3) A rule for finding the height of inaccessible 
objects. 

(4) A table of weights and measures. 
Amongst his writings on mathematics, must be 

mentioned, besides the Definitions and a Commentary 
on the Elements of Euclid, a recently discovered work 
on Measurements, in which the rules and formule 
fer estimating the most important volumes and 
surfaces are enunciated together with theoretical 
proofs. The main part is borrowed from Euclid 
and Archimedes; even the formula which gives the 
surface of a triangle in terms of its three sidesa, b, c—i.e. 

" S = Vp(p —a)(p — b)\(b — c) (where p = the semi- 
perimeter)—is not an original invention, for it was 
probably used by the Egyptian land-surveyors, and 
it is only the demonstration which can be attributed 
to Hero. He also attempted to perfect the levelling 
instrument hitherto used in surveying. These improve- 
ments are carefully described and theoretically correct, 
but they reveal the great. practical ignorance of their 
author. The work entitled The Construction of Vaults 
was also probably written with a practical aim in view, 
and at any rate had the honour of being studied and 
commented upon by one of the architects of St. Sophia, 
Isidore of Miletus. Inspired by previous works, Hero 
has been able to give very exact information on The 
Construction of Catapults ; on the other hand, some of 
his writings, which are similar in conception to those of 
Archimedes and Philo, display great defects, especially 
the Pneumatics, in which the theory of the pressure of 
the air is applied to various apparatus. These are for 
the most part borrowed from Philo, and their descrip- 
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tion, containing some new additions, reveals an 
imitator who is unfamiliar with experiments and 
technique. The instructions given for the construction 
of a troupe of performing automata on a larger scale 
than that of Philo suffers from the same defect: the 
author, for example, forgets to describe the motive 
power which puts the whole in motion.!_ These latter 
writings were, however, much appreciated both by the 
Arabs and the savants of the Renaissance ; they gave 
rise to the construction of many garden fountains with 
figures moving automatically, which excited the 
admiration of visitors. The old clock of Strasbourg 
with its moving figures is a direct descendant of the 
Automata of Hero. The Mechanics, of which we only 
possess the Arabic version, is less defective : it explains, 
in accord with Archimedes, the principles of statics 
and the parallelogram of forces, and describes the use 
of the toothed wheel, the lever, the tackle, the wedge, 

and the screw. Hero has also devoted a work to the 
study of the crane, and the problem of Archimedes: to 

move a given weight with a given force. Despite its 
defects, his work remains one of our chief authorities on 
the history of Greek mechanics. 

2. GEOGRAPHY AND ASTRONOMY 

The interest in geography awakened by the conquests 
of Alexander the Great, far from declining, continued 
and developed thanks to the fostering care of the 
Seleucids and the Ptolemies. The progress of mathe- 
matics, also, had a favourable influence on the 
development of this science, which, from the purely 
descriptive stage, grew more and more systematic and 
accurate. 
ERATOSTHENES of Cyrene (275-194 B.c.), the learned 

librarian of Alexandria, must be regarded as the creator 
of geography as a science. His history of geography 

115 Heiberg, Naturwiss., p. 79 et seq. 
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since the Homeric age displays true historical per- 
ception, especially in comparison with the fantastic 
descriptions given at the same period by certain com- 
mentators on Homer. After having calculated mathe- 
matically the habitable regions (78,000 stadia by 
38,000), Eratosthenes divides them by parallels to the 
equator and meridians into unequal rectangles. The 
parallel which passes through Gibraltar and Rhodes is 
in the middle and separates the northern parallels 
(Byzantium, Borysthenes or Dnieper, Thule) from the 
southern (Alexandria, Syene, and Meroe). The 
extreme meridians are formed by the Pillars of 
Hercules (Gibraltar) and the Ganges.1 Eratosthenes 
also measured the length of the circumference of the 
earth by a method as ingenious as accurate. He 
observed that at Alexandria at noon, at the time of 
the summer solstice, the distance of the sun from the 

zenith is one-fiftieth of the circumference of the heavens, 
whilst at Syene at the same moment the sun is at the 
zenith, since it lights up perpendicularly the bottom 
of the wells. These two towns, situated on the same 
meridian, are 5,000 stadia apart. Therefore, by 
multiplying 5,000 by 50, the required measurement is 
found, namely, 250,000 stadia, which is equal to about 
44,000,000 metres, the stadium being equal to 177-4 
metres (Cleomedes, de Motu circulart, p.96, 21). (Fig. 8.) 

Although the method used is correct, the result 
obtained is not accurate. Firstly, Syene and Alexan- - 
dria are not on the same meridian: between these two 
towns there is a difference of longitude of 3°.2. Further, 

1G. Lespagnol, Géographie générale, Delagrave, Paris, 
p. 83. For the authenticity and interpretation of the frag- 
ments of Erastosthenes, see A. Thalamas, Etude bibliographique 
de la géographie d’Evatosthéne, Riviére, Paris, 1921; La géo- 
graphie d’Evatosthéne, Riviére, Paris, 1921. 

?“ Astronomie,” Kultur der Gegenwart, Teubner, Leipzig, 
LOZ Dw Pelogs 
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the length of 5,000 stadia, calculated by the day’s 
march accomplished by caravans, is necessarily only 
approximate. The measurement found by Eratos- 
thenes is nevertheless an interesting datum. Had 
Newton been acquainted with it, he would have been 
able to verify his hypothesis of gravitation, without 
being obliged to shelve it for years! until Picard 
succeeded in measuring the radius of the earth more 
exactly. In other realms of knowledge, Eratosthenes 
showed himself to be an erudite and remarkable 
savant, whom Archimedes held in high esteem, and with 

whom he wished to collaborate in his own researches. 
We do not know very much of his work, except the 

Alex2te rea 

Fic. 8. 

Sieve, which bears his name, which is a method of 
finding the sequence of prime numbers. He also 
invented, for finding the value of two mean propor- 
tionals, an ingenious mesolabe, which he placed in a 
temple of Alexandria with a dedication in honour of 
Ptolemy II. Finally, he devised the Calendar after- 
wards known as the Julian Calendar. 

Astronomy, like geography, developed in a remark- 
able manner during this period, owing to the combined 
progress of mathematics, mechanics and technique. 
The surveying instruments with their screws and 
toothed wheels were of great assistance to astronomers, 
for instance the apparatus invented by Archimedes for 
measuring the diameter of the sun. 

123 Rouse Ball, History of Mathematics, II, p. 16. 
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As a result, the observatory of Alexandria was able 
to undertake a systematically planned series of measure- 
ments to check the figures furnished by Chaldean 
astronomy. The customary divisions of the day and 
night being too inaccurate, the Babylonian division 
into exact hours, already known by Herodotus (II, 
109), was adopted, and this, coming into current use, 
was afterwards accepted by the Romans. The sexa- 
gesimal division of the circle (degrees, minutes, seconds) 
was also borrowed from the Babylonians; but other- 
wise the Egyptian use of fractions having numerators 
always equal to r was preserved. The foundations 
of trigonometry were also laid. This is proved by a 
writing of Aristarchus of Samos (310-250 B.C.) in 
which, following the example of Eudoxus, he attempts 

to determine the magnitude of the sun and moon and 
their distance from the earth. The results obtained 
are satisfactory for the moon but not for the sun. In 
this writing Aristarchus keeps to the geocentric hypo- 
thesis, although, as we have seen, he elsewhere maintains 
the heliocentric hypothesis taken up by Copernicus 
many centuries later. The way for this hypothesis had 
already been prepared by the Pythagoreans and by the 
opinions held by certain groups of Athenian philoso- 
phers. It is also possible that Aristarchus was en- 
couraged in his views by the influence of his master, the 
physician Strato. In spite of its simplicity, the helio- 
centric hypothesis was opposed for physical and religious 
reasons ; for example, the Stoic Cleanthes considered 
it a blasphemy. Its only defender was SELEUCUS of 
Seleucis (about 150 B.c.), who gave at the same time a 
correct explanation of the ebb and flow of the sea, 
showing by observations the dependence of these 
phenomena on the position of the moon. He also 
affirmed, with Heraclides of Pontus, the infinity of the 
universe.? 

115 Heiberg, Naturwiss., p. 62. 
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Conon and DosiTHEvs, the friends of Archimedes, 
were especially notable observers. Conon, in par- 
ticular, discovered a group of stars which he called 
“ Berenice’s Hair” in honour of the wife of Ptolemy 
Euergetes. 

Taking as a basis the celestial map of Eudoxus, 
ArRaATus of Soli wrote a descriptive poem on the starry 
heavens, which, although possessing no great literary 
qualities, made an enormous sensation. It had several 
Roman commentators, amongst them Cicero, and, 

with its illustrations of antique figures, enjoyed great 
fame in the Middle Ages. 

However, the greatest astronomer of antiquity was 
incontestably H1ppaRcHuS, who was born at Nicaea in 
Bithynia and spent the greater part of his life at Rhodes. 
One of his observations on the star 7 Canis Majoris 
enables us (as Delambre has shown) to fix the date of his 
work at about the year 120 B.c. His scientific activity 
was prodigious. In his youth, he composed a Com- 
mentary on the Phenomena of Aratus and Eudoxus, 

which is unfortunately the only one of his writings 
now extant. He constructed several instruments, 
amongst others a dioptra for measuring the apparent 
diameter of the sun by a much simpler method than 
that of Archimedes. His apparatus is composed of a 
graduated scale on one end of which is a sight and on 
which slides a cursor. To take an angular measure- 
ment the cursor is moved until the eye looking through 
the sight sees it cover the magnitude to be measured, 
such as, for example, the diameter of the sun. This 
instrument with few modifications became that known 
as Jacob’s staff, or cross-staff. Hipparchus also made 
use of two instruments to which he gave the name of 
astrolabe. ‘‘ The first, or spherical, astrolabe was com- 
posed of several metallic circles, some fixed, others 

movable. The first circle of all was the meridian; it 
was suspended from a fixed point, or better still, sup- 
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ported by a small pillar, to which it was fixed by its 
lowest point ; another circle, movable about the axis 
of the earth, could always be brought to coincide with 
the ecliptic; a third circle turned round the poles of 
the ecliptic on two cylinders which were fixed thereto 
and marked the longitudes; finally, a fourth circle, 
placed inside the three others, carried two sights used 
for sighting the heavenly body, whose position it was 
desired to determine.’’ The second, or planispherical, 
astrolabe was quite different from the spherical 
astrolabe, or armillary sphere; it was composed of a 
disc which could be suspended vertically or placed 
horizontally ; it was used for taking the altitude of the 
stars and for solving triangles. ‘‘ Thus the same name 
has been given to two things which have no resemblance 
and thereby regrettable confusions have arisen.” 4 
Hipparchus also invented trigonometry, but, in order 
to solve a triangle, he always supposes it to be in- 
scribed in a circle; the sides of this triangle are then 
chords which are calculated as a function of the radius 
of the circle. This being so, Hipparchus calculated a 
table of chords and laid down the formule by which 
the problems of spherical astronomy can be solved. 
He is thus more truly than Aristarchus the creator of 
trigonometry. 

Having seen a new star appear, he had the idea of 
making for posterity a catalogue of the positions of the 
stars and principal constellations. One can never, 
said Pliny, praise him enough for this undertaking, 
which would have made even a god shrink back 
(Nat. Hist., I, p. 159, 10). Thanks to the accuracy of 
his observations, which he compared with those of his 
predecessors, Hipparchus proved that, if the latitudes 
of the stars have remained constant, their longitudes 
have all increased by the same amount. He concluded 

1 Doublet, Hzstoive de l’Astronomie, Doin, Paris, 1923, p. 
105. 
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from this that the vernal equinox is displaced along the 
ecliptic, and thus he discovered the precession of the 
equinoxes.1_ He propounded the problem, which bears 
his name, concerning the irregular movement of the 
sun, and he solved it by means of an eccentric move- 
ment which he calculated. He also discussed the 
irregularities of the moon and attempted to determine 
its parallax, and he thus succeeded in accurately pre- 
dicting eclipses, which justifies the admiration of 
Pliny (Nat. Hist., I, p. 143, 14). As Bigourdan re- 
marks, “‘ With this extraordinary man there suddenly 
appears a perfected astronomy, far superior to that of 
the preceding age; the theories of the sun and moon 
are formulated, and those of the planets outlined ; the 
great desideratum of ancient astronomy, the prediction 
of eclipses, is now a problem solved. For the first 
time, the positions of a great number of stars scattered 
in the sky were known, and by the discovery of the 
precession their co-ordinates for any period could be 
calculated.’’? Hipparchus considered that geography 
as a science must be based on precise astronomical 
data, and he severely reproached Eratosthenes for not 
having satisfied this condition. But taking into 
account the difficulties of the work, these reproaches 
are unjust. Moreover they had the effect of retarding 
the scientific development of geography, which from 
that time became merely descriptive and _ ethno- 
graphical until its mathematical and astronomical 
aspects were once more studied by Straso. The 
latter, however, looked upon exact science as only an 
occasional help to geography, the main work being to 
describe the countries known and inhabited in the time 
of Augustus, and not to make a study of the dimensions 
of the earth. Strabo certainly acquitted himself mar- 
vellously of his self-appointed task, particularly as 

1 Doublet, Histoire de l’Astronomie, p. 106. 

*2 Bigourdan, Astvonomie, p. 279. 

7 
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regards Italy. His writings abound in narrative and 
vivid descriptions, gathered in the course of his travels 
from Armenia as far as Sardinia, and from the Euxine 
to Ethiopia. This period was rich in geographical 
literature, of which we only possess a small portion, 
comprising some fragments of PoLEMON; and a 
description, by an unknown author, of Thebes in 
Greece as a town with somewhat unsafe streets, 
but charming with its fruitful gardens and veiled 
women. 

Although the mathematical and astronomical side 
of geography was not neglected by Strabo, it is 
PosIDONIUS (133-49 B.C.) to whom it is most indebted. 
Posidonius was a native of Syria, but settled at Rhodes, 

where his school was frequented by Cicero and Pompey. 
Although a Stoic, he was interested in mathematics 
and natural science. He wrote an important work on 
the Ocean and a Commentary on the Timaeus of Plato, 
in which he treats of the mystic arithmetic of the 
Pythagoreans. Besides this, he was a champion of 
divination and astrology, the constructor of a planet- 
arium, and a student of meteorology and astronomical 
problems. Geminus has given us a sketch of these 
works, and in the second century CLEOMEDES made use 
of them in his summary of astronomy (de Motu circulari, 
p. 90, 22). It certainly cannot be denied that 
Posidonius made original researches in geography and 
ethnography, but his claim to fame chiefly rests on the 
fact that he popularized and brought the principal 
geographical and astronomical attainments of the Greek 
science of his period within the reach of the cultivated 
public of Rome. In doing this, he often passes over in 

silence interesting theories, which thus, for long cen- 

turies, fell again into oblivion, for example, the helio- 
centric hypothesis of Aristarchus, and the explanation 
of the tides by Seleucus. 



THE ALEXANDRIAN PERIOD 89 

3. MEDICINE AND THE NATURAL SCIENCES! 

Although Ptolemy II was a lover of curious and rare 
animals, the natural sciences made scarcely any pro- 
gress during his reign ; they remained as Aristotle and 
Theophrastus had left them. The writings on these 
subjects had a practical aim ; the culture of fields and 
gardens, the raising of cattle. Certainly the poet 
CALLIMACHUS compiled a catalogue of birds, and the 
grammarian ARISTOPHANES of Byzantium wrote a 
history of animals, but these writers too often indulge 
in wonders and fables. 

Medicine on the contrary, made real progress, 
largely due to the practice of dissection, which, for- 
bidden in Greece, was practised in Egypt, favoured by 
the custom of embalming the bodies of the dead. It 
appears that the Ptolemies even authorized the 
physicians to make use of the living bodies of criminals 
condemned to death (Celsus: de Medecina, p. 4). 
Under these conditions an anatomy rapidly arose, 
founded on exact observation, and discovery followed 
discovery. 

HEROPHILUS of Chalcedon is justly regarded as the 
creator of human anatomy as well as being the founder 
of the medical school of Alexandria. A disciple of 
Praxagoras (of the school of Cos), he avoided all dog- 
matism and made observation and experience the sole 
basis of his work. He discovered the nervous system 
and was the first to explain its nature and function ; 
he also dissected the eye and the liver. In practical 
medicine he brought to light the importance of the 
pulse in diagnosis. In some respects, ERASISTRATUS 
of Ceos, the physician of Seleucus, was antagonistic 
to Herophilus. For example, he opposed the Hippo- 
cratic doctrine of the humours, and disapproved of the 
practice of bleeding, so much favoured in ancient 

115 Heiberg, Naturwiss., pp. 44, 46. 
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medicine. As an anatomist, he is remarkable: he 
distinguished between the nerves of sensation and 
those of motion, a distinction which had never before 
been made; he accurately described the heart, and 
recognized the importance of the brain, taking note of 
its convolutions. But he still believed with Praxagoras 
that the arteries contained air and not blood. If in 
wounds the blood spurted from the arteries, it was 
because there existed canals of communication between 
the veins and the arteries, and the blood, being no 
longer compressed by the air, passed from the former 
into the latter, conformably to Strato’s theory of 
nature’s abhorrence of a vacuum. The disciples of 
Herophilus and Erasistratus soon fell into a dogmatism, 
which brought about a reaction. ~A school arose called 
the Empiric, which confined itself to purely descriptive 
work and prohibited the inquiry into the general 
causes of things. At Rome medicine for a long time 
was in disfavour. Cato the Elder exhorted his son to 
distrust the poisonous potions of the Greeks; he 
recommended savoy cabbage as a remedy for all ills, 
and healed fractured limbs by magic words. But with 
the progress of civilization the need for physicians made 
itself felt. So that when ASCLEPIADES settled at Rome 
in the first century B.c. he met with immediate success. 
A native of Asia Minor, he was at first a rhetorician, 
but attained such distinction as a physician that he 
refused the offers of King Mithridates. He protested 
against the abuse of drugs and purgatives, he exalted 
the importance of hygiene and recommended cures by 
water, massage and exercise. In this way, without 
possessing very profound medical knowledge, he 
exercised a happy influence. Theoretically he adopted 
the humoral pathology of Hippocrates and completed 
it by Epicurean atomism. In fact Hippocrates re- 
mained the indisputable authority and his writings 
had many commentators, amongst them, APOLLONIUS 
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of Citium (50 B.c.). As the physicians were also 
pharmaceutists, botany benefited by their study of 
plants, for example CRATEvAs, the physician of 
Mithridates, wrote an excellent book on plants with 
illustrations and notes on pharmacy; and the poet 
NICANDER of Colophon composed a work on poisons 
and their antidotes, which in spite of its dulness found 
readers and commentators. 



CHAPTER III 

THE GRECO-ROMAN PERIOD 

(From the Christian Era to the Sixth Century A.D.) 

"| “WHE Roman Empire once established, Greek 
science was able to spread throughout the 
civilized world ; it remained, however, foreign 

to the Western mind, while in the East it made some 
progress or remained stationary, before falling into 
decadence. 

1. THE ROMANS AND SCIENCE 

The Romans, owing to their essentially practical and 
political turn of mind, had little appreciation of pure 
science. They even despised it, and Cicero praises 

them because, thanks to the gods, they were not like 
the Greeks, and knew how to limit the study of mathe- 
matics to utilitarian purposes (Tusculanae, 1, 2). 
The mathematical rudiments of which the Roman 
surveyors had need were borrowed from Greek writ- 
ings in such a way as to enable them to be used in 
practice without the aid of theoretical knowledge. 
When need arose, specialists were called from Alexan- 
dria and shown the measurements to be made. It 
must have been in this way that Agrippa carried out 
the cadastral survey of the empire.t The fragments 
which appear in the mathematical compendiums are 
very poor. MARTIANUS CAPELLA (about 400 A.D.) 
published a work of bad taste, entitled The Marriage 
of Mercury and Philosophy, which was held in high 

115 Heiberg, Naturwiss., p. 73 et seq. 
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repute in the Middle Ages. In this work, he displays 
an utter incomprehension of mathematics by trans- 
lating the first definition of Euclid, “‘ the point is that 
which has no parts,’ by “ the point is that of which 
the part is nothing.’”’ The works of Boetius, which, 
in the Middle Ages, were the basis of the teaching of 
geometry, arithmetic and music, have more value. 

ANICIUS MANLIUS SEVERINUS BoETIUS (480-525 A.D.) 
belonged to one of the most illustrious families of Rome. 
At first a student, he afterwards unwillingly took part 
in the political life of his country and was notable for 
his charity and moral integrity. When elected consul, 
he tried to reform the coinage, but in so doing aroused 
hatred and envy, and being condemned by a tribunal 
was put to death, to the great regret of Theodoric. 
As a writer, he is well known by his De consolatione 
philosophiae. As to his book on Arithmetic, it is a 
rather crude copy of that of Nicomacnus. In another 
work he gives without demonstrations the contents of 
the four first books of the Elements of Euclid, as 
well as some methods of surveying, drawn from various 
authors. This work is so little in agreement with what 
we know of Boetius that P. Tannery considers it a 
forgery, and Cantor supposes it to have been completely 
distorted by unskilful copyists. Such as it is, it con- 
tains a curious passage, which seems to describe a 
system of numeration based on the rule of position, the 
zeros being represented by empty places. 

If the Romans were antagonistic to pure science, 
they were, on the other hand, much addicted to super- 
stitions. NiGRIpIUuSs FIGULUS by introducing astrology 
into Latin literature gained great fame amongst the 
cultivated classes. It was the same with the manual 
of astrology written with zeal and conviction by 
Frrmicus MAaTernus. The short work of CENSORINUS 

19 Cantor, Geschichte, I, p. 533.—6 Boyer, Histowve des 
mathématiques, p. 64. 
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on The Day of Birth, and the intelligent views of 
astronomy and physics, which Seneca, inspired by 
Posidonius, gives in a popular form in his Naturales 
Quaestiones, must be pointed out as worthy of interest. 
Amongst other subjects, Seneca devoted a long study 
to comets, to demonstrate that they must be likened to 
planets and consequently possess a periodic movement. 
The work of Vitruvius On Architecture is quite crude ; 
the extracts from Greek authors on mechanics and 
technique are expounded so foolishly and in such 
obscure language that it would seem that the author, 
in spite of his pretensions, could not really have been 
an architect to Augustus. The natural sciences are 
well represented by The Natural History of PLINY THE 
ELDER, whose death in 79 A.D. was caused by his 
desire to observe the eruption of Vesuvius from a near 
point of view. This vast compilation is a mass of 
observations collected with astonishing and often 
uncritical zeal and drawn from the most diverse writers ; 
it brings before the reader a comprehensive survey of 
geography, anthropology, zoology, botany, medicine, 
mineralogy, and art. Perhaps the finest product of 
Roman scientific literature was the text-book of 
CoRNELIUS CELSUS On Medicine. It formed part of 
an encyclopedia which has been lost, and although 
not written by a specialist, it makes intelligent use of 
Greek authorities and has preserved many an interesting 
detail, for instance, of Alexandrian surgery. Apart 
from the work of Celsus, there were only books of pre- 
scriptions. However, during the decline of antiquity 
many excellent translations of Greek authors appeared, 
such as the translation of the therapeutics of Soranus 
by CAELIuS AURELIANUS in the fifth century A.D. 
Works of this kind continued to appear until well into 
the Middle Ages, and even in the darkest periods the 
Greeks were acknowledged as the masters of medicine. 

15 Heiberg, Naturwiss., p. 75. 
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Geographical and ethnographical studies were much 
in favour amongst the Romans. Sallustus and Caesar 
give interesting information, the former on Northern 
Africa, the latter on Gaul. Tacitus describes Great 
Britain and particularly Germany and Scandinavia. 
In the only mention he makes of astronomical subjects, 
he shows how little the cultured Romans knew, for 
he explains the light of the polar nights by the flatness 
of the outermost countries of the earth, thus forgetting 
what had been a commonplace of knowledge in Greece 
for several centuries, to wit, the rotundity of our globe 
(Agricola, ch. 12). It is evident that the Romans did 
not study geography for its own sake, though we must 
except Pomponius MELA (first century A.D.) who 
utilized in a small but excellent text-book the statistical 
material collected by Agrippa. 

2. GREEK SCIENCE IN THE EAST 

Thanks to the power of tradition, intellectual activity 
was maintained, in spite of unfavourable conditions, 
simultaneously in Greece, Egypt and Asia Minor.1. As 
soon as the imperial power came into the hands of the 
Antonines, Greek literature and science revived in 
some degree. There was a return to the past, which 
was specially favourable to the latter studies. The 
scientists were kept in practice by studying the great 
works of their predecessors, and if they made no 
original discoveries, they produced interesting com- 
mentaries, or systematized the results already obtained. 
Astronomy was brilliantly represented by CLAUDIUS 
ProLteMy (date of birth uncertain, death probably 
168 B.c.). Belonging to the Peripatetic School of 
philosophy, Ptolemy defended the views of Aristotle on 
the nature of matter and on gravitation; he main- 
tained, for example, that a bather does not feel any 
pressure of the water above him, and that a bladder 

125 Tannery, Science helléne, p. 5. 
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full of airis lighter thanan empty bladder. His Optics, 
of which the first book has been preserved to us in a 
laborious translation from Arabic into Latin, treats not 
only of perspective as Euclid had done, but also of the 
physical conditions of vision and of optical illusions, and 
here Ptolemy accepts the theory of Plato that visual per- 
ception is produced by the rays proceeding from the 
eye meeting those proceeding from the object. In his 
Catoptrics he studies mirrors, and by measurements 
seeks to establish the law of angles of incidence and 
reflection. He also made comparative experiments 
on refraction in water and glass, and ascertained the 
existence of an astronomical refraction, the distance 
from a star to the pole being smaller when the star is on 
the horizon than when it passes the meridian. The 
figures found are not always accurate, but the experi- 
ments and ideas remain none the less of prime import- 
ance. Another work, more important still, was the 

one which Ptolemy devoted to astronomy. It was 
soon used as a text-book in the schools of Alexandria, 
and in order to distinguish it from similar but much 
smaller works, it was given the title of “ #ueyiotn,” 
the greatest (book understood), which translated into 
Arabic became corrupted into Almagest.1 The work 
is, divided into 13 books. In the first, Ptolemy gives 
an exposition of plane and spherical trigonometry and 
a table of chords. The second book discusses the 
phenomena arising from the spherical shape of the 
earth, with the admission that the hypothesis, which 
he rejects, of the revolution of the earth round its axis, 
would greatly simplify the explanations. Books III- 
VI treat of the movements of the sun and moon and 
of eclipses, all explained by means of epicycles and 
eccentrics. Books VII-VIII contain the catalogue of 
Hipparchus, completed and enlarged. The last books 
enumerate the sidereal phenomena which occur every 

115 Heiberg, Naturwiss., p. 82. 
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year. A set of well-arranged astronomical tables 
enables the time and eclipses to be determined accord- 
ing to the seasons and the days. These tables, because 
of their convenience, remained long in use. 

The work thus accomplished is worthy of admiration, 
although Ptolemy lays himself open to the reproach 
of not having passed on to us any accurate observations, 
perhaps even of having made fictitious observations to 
justify his hypotheses.? 

The Tetrabiblos is a compendium of astrology, which 
was wrongly, for a long time, not attributed to Ptolemy, 
being considered unworthy of him. It gives a sys- 
tematic outline of astrological questions and contains 
many interesting ideas on the psychology of nations ; 
it is far superior to similar works of that period. 
Amongst these must be mentioned the dialogue 
Hermippus, in which an unknown author defines the 
position of Christianity in relation to astrology. 

Finally, in a geographical work, Ptolemy solves, 
with much skill, the problem of the projection of a 
spherical surface on a plane. 

In the realm of mathematics MENELAUS published, 
towards the end of the first century A.D., a writing 
entitled On Spherics, which contains an important 
theorem on the spherical triangle. NicomMacuus of 
Gerasa (Syria) brought out at almost the same time 
(A.D. 150) an Introduction to Arithmetic, which was, as 

we have seen, translated into Latin by Boetius. This 
introduction, amongst other propositions, enunciates 
the following: the cubes of whole numbers are 
successively obtained by the addition of odd numbers 
in this manner : 

Sie 2 79 AT = 37, 13 +15. 17 £19 = 4, 
aI + 23 +25 +27 + 29 = 5%, etc. 

As to THEON of Smyrna, he is chiefly known by an 

12 Bigourdan, Astronomie, p. 295. 
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exposition of the mathematical, astronomical and 
musical knowledge necessary to the understanding of 
Plato. 

Pappus, who lived at Alexandria towards the end of 
the third century A.D., was remarkable for other reasons. 
He wrote several works of which we only possess one. 
This is a systematic account, with explanatory com- 
ments, of the great geometrical problems studied in 
antiquity. Designed as an aid to the understanding 
of the theories of Euclid, Apollonius and Archimedes, it 
contains a quantity of historical information of the 
greatest interest, the accuracy of which has often been 
verified. It is, besides, more than a mere compilation ; 
in it we already find an enunciation of the theorem of 
Guldinus, the fundamental relation of the anharmonic 
ratio of four points, and the famous problem of Pappus 
on geometrical loci, the problem which was the starting- 
point of Descartes’ researches on analytical geometry. 

The dissertation of SERENUS of Antinopolis (Egypt) 
on the sections of the cone and cylinder do not contain 
anything very new ; his proposition on transversals is 
of greater interest. However, it was DIOPHANTUS in 
particular, who, between the third and fourth centuries 
A.D., directed mathematics into a new path. His 
writings soon fell into oblivion, and it was not until the 
year 1460 that they became known to the scientific 
world through Regiomontanus. They contrast so 
much with the works of other geometers that some 
critics have found in them traces of Hindoo influence. 
Others, more enlightened, have recognized in them the 
contents, in a new form, of the geometrical algebra 
which had from the beginning been used by Greek 
mathematicians. It is scarcely credible besides that 
one man alone could have collected so many problems 
and solved so many equations. Diophantus had the 
great. merit of creating a language and appropriate 
symbols: in doing this he has not altogether broken 
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with geometrical tradition, he still calls a square the 
product of two numbers ; his method, on the contrary, 
is purely arithmetical. The problems are treated with 
much elegance, but point by point, without bringing in 
any general formule. The result is that Diophantus 
rejects as impossible the negative or irrational roots of 
an equation, and that, where two positive roots are 

possible he only keeps one. The problems set are 
very varied and lead to equations of the first, second, 
and sometimes third degree with one or more variables. 
One of these problems relates to the price of wine, and 
itis by the data of this problem that P. Tannery has 
fixed the period in which Diophantus lived.} 

An interesting fact to be noted in the history of the 
mathematics of this period is the lively interest taken 
in them by the Neo-platonic school of philosophy. 
PorpHyry and JAMBLicHuUS devoted several writings 
to arithmetical questions, and Proc us in the fifth 
century A.D. wrote an interesting commentary on the 
works of Plato and the first book of Euclid. 

Amongst other commentators of the period we must 
point out SIMPLICIUS, who, in 529 A.D., after the closing 
of the university of Athens by Justinian, fled into 
Persia, and whose commentaries on Aristotle are 
invaluable ; also Eutocius of Ascalon, to whom we owe 
an edition of the Conic Sections of Apollonius, and of 
some writings of Archimedes with explanatory notes. 
His work was rescued from oblivion by Isidore of 
Miletus, the architect of St. Sophia. 

It was likewise to such commentaries that the later 
representatives of the mathematical school of Alexan- 
dria devoted their energies. THEON, about the year 
370 A.D., edited the Elements of Euclid and the short 
course of astronomy which had been extracted from 
the Almagest for the purpose of teaching. His 
daughter HypaTiA, who fell a victim to the fanaticism 

128 Tannery, Mémoires scientifiques, p. 70. 
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of Christian monks, commented on Diophantus and 
Apollonius. 

If the exact sciences made but little progress, it 
was not the same with medicine1 A disciple of 
Asclepiades, THEMISON of Laodicea, founded the 
methodic school, who considered that all maladies 
arose from the general state of the body, a theory 
which might, however, lead to regrettable negligence 
of special symptoms. Soranus of Ephesus was the 
most distinguished representative of this school in 
the second century. His literary output was very 
abundant and embraced all the subjects of medical 
interest, as well as the history of this science; unfor- 
tunately we only possess fragments of it, but these are 
sufficient to justify their author’s reputation as a 
gynecologist. Soranus treats not only of the child to 
be born and of the birth, but gives wise advice on the 
first cares to be lavished after the accouchement, on the 
choice of a wet-nurse, and on the treatment of abnormal 
and sickly infants. During the accouchement the 
mother must not be lying on a bed, but placed in a 
chair, specially constructed for this purpose. As to 
abortion, it must only be practised in an exceptional 
manner, and only in cases where the woman is unable 
to bring her child into the world without endangering 
her life. The newly-born babe must be nursed by its 
mother if possible. In any case, the meals must be 
regular, and the breast must not be given to quiet a 
child because it cries; for its cries, provided they do 
not last too long, are excellent exercise for the lungs. 
After a year and a half or two years the baby must be 
weaned, preferably in the spring. 

In opposition to the Methodic school, there arose 
the Pneumatic school founded by ATHENAEUS (of Asia 
Minor), which connected its principles with the Stoic 

115 Heiberg, Naturwiss., p. 89 et seq. 
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philosophy. The spirit or pneuma (zvevua), which is 
innate in every man, regulates health and disease. 
ARCHIGENES of Syria, about the year I00 A.D., some- 
what modified this theory. His writings are lost, 
but we can reconstruct them partly by the quotations 
of Galen and partly by a compilation of ARETAEUS 
of Cappadocia, who borrowed from Archigenes the 
best part of its contents. It contains faithful and 
penetrating observations of nature, and a remarkable 
description of elephantiasis, a disease which was still 
unknown in the West. In therapeutics, Archigenes 
favoured regimen ; he studied the effects of wine and 
mineral waters, and recommended cold water baths 
and sun baths. 

Apart from some minor works of RurFus of Ephesus, 
none of the medical literature of the first century A.D. 
is extant. This lack is due to CLAUDIUS GALEN, who 
played the same part in Greek medicine as Ptolemy in 
astronomy, that is, in his works, he absorbed and 
rendered useless those of his predecessors.t He was 
born at Pergamum in 129 and died at Rome in 200 
A.D., received a careful and extensive education, and 
in the midst of a busy life, found time to write more 
than 150 medical works, of which about 60 are 

extant. This enormous production inevitably contains 
repetitions and superficial pages, and it is stamped 
with childish vanity, but it possesses none the less 
real merit, independently of the part it has played 
in the history of medicine. Galen indeed was not a 
mere compiler and arm-chair philosopher; he was a 
practitioner and knew how to carry out successful 
researches; he raised the level of medicine at an 
epoch when the schools in repute proclaimed, in the 
name of empiricism, the futility of theoretical pre- 
paratory studies for this science, and when it was 

1 For the life and writings of Galen, see Croiset, Histoive 
de la littérature grecque, V, p. 715, Fontemoing, Paris, 1899. 
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necessary to go from Rome to Alexandria to learn 
anatomy from a human skeleton. After having 
studied at Smyrna, Corinth and Alexandria, Galen, at 

the age of 28, settled at Pergamum as physician to the 
athletes. After some years he decided to try his 
fortune in Rome, in which city he soon gained great 
renown. When attacked by his colleagues he defended 
himself by publishing some pamphlets of which the 
tone and matter is often coarse. When he was about 
to be presented to the Emperor Marcus Aurelius, he 
abruptly quitted Rome, fearing that a plague, which 
had just broken out in the East, would spread 
there. He returned after a short time, and displayed 
great activity for another thirty years. His physio- 
logical conceptions are based on the humoral theory of 
Hippocrates, an author with whom he was very 
familiar and whom he followed intelligently ; his doc- 
trine of the vital forces placed by Nature in the body 
to control it, had a great influence in later times. In 
therapeutics, Galen recommends cures of fresh air and 
of milk, also medicines of doubtful composition. 
Amongst these, he highly commends theriac, an 
antidote against poison, specially prepared for the 
emperor, which was composed of 70 ingredients, includ- 
ing the bodies of boiled vipers. With all this, however, 
he recognized the importance of anatomy, and in 
default of human bodies the dissection of which was 
forbidden, he operated on animals, more especially 
monkeys.t After him, medical literature produced 
nothing but compilations of which the most celebrated 
is, justly, that of OrrBasius, the physician of Julian 
the Apostate. 
Among the natural sciences, botany continued to 

benefit from the progress made by medicine. 
DioscorIwEs of Cilicia in the first century compiled a 
catalogue of useful plants (to the number of 600), 

115 Heiberg, Naturwiss., p. 94. 
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which was very popular in the Middle Ages. Zoology, 
on the contrary, came to a standstill. Already in 
the second century, an unknown author, surnamed 
Physiologus, had foreshadowed by his fabulous and 
mythical descriptions of animals the Bestiary litera- 
ture, and his work had a great influence on the animal 
decorations of the Middle Ages. In this period we 
must also mention Alchemy, to which we shall have to 
return and of which Zosimus, about the year 300 A.D., 
summarizes the knowledge, sometimes fantastic, some- 
times useful, relating to the working of metals. 
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immediately attracts attention. It is the su- 
premacy over all the continents which Europe has 

been able to win and to keep until the present day. 
The cause of this supremacy has not been either 
numerical superiority or a more advanced social organi- 
zation or even any particular religious and literary ideas. 
The Chinese, as is well known, were civilized long before 
the Europeans, and, long before them, were acquainted 
with the use of the compass and even of gunpowder. 
The Hindoos, on the other hand, have possessed from 
the remote past a religion and a literature whose 
attraction, even to Western minds, is far from being 
exhausted; and in Central America there existed a 
state of advanced civilization, which was annihilated 
by the Spanish conquest. As to numerical superiority, 
it is sufficient to recall the fact, that even at the present 
time, either India or China has a larger population 
than Europe. If the white race has triumphed over 
other races, it is because it possessed weapons infinitely 
more formidable than those of its adversaries, and that 

for commercial transactions it had at its disposal manu- 
factured products far superior to those of other nations. 
Now, the manufacture of these weapons and products 
has only been rendered possible through the progres- 
sive development of the mathematical and physical 
sciences of which the Greek nation laid down the 
principles and established the solid foundations. So it 
may be said that if ancient Greece had not created 
and transmitted rational science to Europe, the latter 

105 
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would never have gained and kept its world-supremacy. 
Doubtless, long before the Greeks, men possessed 
scientific knowledge, instinctive and practical. Already, 
in the Stone Age, they knew how to use the lever to 
move heavy objects, and how to make spears and 
arrows. At a later period the Chaldean and Egyptian 
civilizations witness to a very remarkable technical 
knowledge ; but as we have seen, they did not succeed 
in creating rational science, that is, in giving a reasoned 
explanation of natural phenomena and _ technical 
processes. 

In the presence of Nature, two types of explanation 
can be utilized: the one brings into play the rational 
mentality, the other belongs to what M. Lévy-Bruhl 
calls the pre-logical mentality, and which it would be 
preferable to call with M. Brunschvicg the pre-scientific 
mentality.} 

The latter is common amongst primitive peoples ; it 
conceives of the links of causality between natural 
phenomena as a form of mystical participation, which 
is in a sense extra-spatial and extra-temporal.2 An 
individual is devoured by a crocodile or a lion. If he 
dies in this manner, it is not, in the mind of the savage, 
because he has imprudently approached one of these 
ferocious animals ; it is because a malevolent spirit has 

1JIn fact, in the reasoning of the savage, the use of the 
principle of contradiction is by no means abolished as M. 
Lévy-Bruhl seems to imagine. Only it is exercised on another 
plane. To primitive man contradictions manifested them- 
selves in the realm of the mystical, not in that of sensible 
experience, See our article, “Le probléme de verité,’”’ in 
the Revue de théologie et philosophte, Lausanne, Dec. 1923. 
This is why we choose in preference to the appellation of M. 
Lévy-Bruhl that which M. Brunschvicg has adopted in his 
masterly work, L’expérience et la causalité physique, Alcan, 
Paris, 1922, 9p) 113. 

* Lévy-Bruhl, Mentalité primitive, Alcan, Paris, 1922, pp. 
55 and 516. 
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incited the crocodile or lion to devour him. These 
animals have not acted by themselves in obedience to 
their instincts, they are only an instrument used by the 
malevolent spirit. The latter could have chosen some 
other instrument, disease, for example, and in this case 
the individual destined to perish from its attack could 
have approached the lion or crocodile without danger. 
Here is another fact: Some one swallows poison and 
dies. To modern science, the poison, through the 
stomach, penetrates the blood, and corrupts it, or acts 

on the nervous system by causing an arrest of essential 
vital functions. There is here a whole chain of causes 
and effects produced from the moment when the poison 
is swallowed until that in which death supervenes. 
This succession of links is more or less rapid according 
to the case, and by the use of an antidote it may be 
checked. To the pre-scientific mind, things happen 
differently. It is an evil spirit, and he alone, who gives 
to the poison its hurtfulness ; by itself it has no power 
and without the spirit incarnate in it, would be harm- 
less. Hence the custom of ordeals or judgments by 
poison, so common amongst savage tribes. Every 
accused person could vindicate himself by submitting 
to the test of poison ; if he vomited it, it was because 

he was innocent; if he died, it was because he was 
guilty. Thus, whilst the scientific mentality always 
seeks the cause of a sensible phenomenon in a com- 
bination of conditioning phenomena, also sensible, the 
pre-scientific mentality appeals to mystical and occult 
forces invisible and imperceptible to the ordinary 
means of perception. These forces are the real causes 
of sensible phenomena; they float around man, who 
cannot always locate them in time and space, or even 
distinguish them, for they are in a sense extra-spatial 
and extra-temporal. They seem to imply to the 
primitive mentality a supplementary dimension ignored 
by us, not a spatial dimension like a fourth dimension, 
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but rather a dimension of experience as a whole. We 
see that, for the linking of secondary causes which our 
sciences explain by formule and laws, primitive man 
substitutes another type of connection, that of occult 
and mystical powers. It is these powers which render 
effective the connections which we perceive between 
sensible phenomena in the effects of poison, drought, 
etc. It is therefore to these that heed must be taken 
for the guidance and right direction of life. Conse- 
quently the links which the scientist carefully notes in 
the succession of phenomena, have, for the primitive 

mind, only a relative importance, since they can be 
used indifferently by the occult power, and their con- 
nection is not inevitable. It is only the purpose of 
the spirits acting on these phenomena which needs to 
be considered, and not the means they use for its 
realization. Certainly savage races are not lacking in 
technical skill, and the pottery, baskets and canoes 
which they have succeeded in constructing with their 
clumsy tools are admirable. But this technical skill 
may be merely the result of long practice, it does not 
necessarily imply a scientific and thoughtful mental 
activity. It may be compared “ to the skill of a good 
billiard player, who, without knowing a word of 
geometry or mechanics, without need for reflection, 
has acquired a rapid and sure intuition of the move- 
ment to be made in a given position of the balls.” 1 To 
sum up, there is a profound difference between the 
conceptions of the pre-scientific mind and those of the 
rational mind. To the former, the production of each 
phenomenon is linked to the benevolent or malevolent 
disposition of the occult powers. The man may make 
use of certain talismans and practices to ensure the 
regular and favourable course of phenomena. By 
ritual prayers and sacrifices, fixed according to circum- 
stances, he may propitiate the spirits and hence the 

1 Lévy-Bruhl, work quoted, p. 518. 
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events. But on the one hand it is not always easy to 
discover the really efficacious rite, and on the other 
hand, the desired result always remains uncertain since 
it depends on the good will of the spirits. The scientific 
and rational mind proceeds otherwise. In its concep- 
tion the relation which unites one sensible phenomenon 
to another, such as a cause to its effects, is constant. 
Hence, this relation once discovered, the phenomena 
and the resulting consequences can be made use of 
with certainty. 

Strange as it may appear, it is much easier to inter- 
pret natural phenomena according to the pre-scientific 
mind than according to the rational mind.! The 
actions and reactions which take place in nature are 
so complex and so varied that research into causes 
and laws in the scientific sense is extraordinarily diffi- 
cult and arduous. In fact, no people except the Greeks 
have attempted it. The Hindoos, for example, in spite 
of their very advanced civilization, have never in their 
reasoning gone beyond the stage of the pre-scientific 
mentality. The flux of sensations which creates in us 
the image of the perceptible world does not, according 
to them, obey constant and fixed laws; it cannot give 
birth to a science, properly so called. Ancient Greece 
has had the genius and audacity to conceive that the 
matter on which our mental activity is exercised is 
subject to determinate relations. It has formed the 
opinion that these relations could not exist without 
a community of nature between the terms of which 
they are constituted: the effect must have some 
resemblance to the cause which produces it. It is 

1M. Jean Piaget has just published a book which is very 
suggestive on this point, Le langage et la pensée chez l’enfant. 
Delachaux and Nietslé, Neuchatel, 1923. This book, original 
in its method and results, shows in particular how, in the 
child, scientific notions are gradually and with difficulty 
substituted for pre-scientific and egocentric ideas, 
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the same in what concerns the relation of law to 
consequence. 

This being so, it is necessary, for the explanation of 
the relations between the lines and surfaces of which 
geometrical figures are constituted, to have recourse to 
geometrical and numerical reasonings; to account for 
the phenomena of the physical world, it is necessary to 
appeal to mechanical and physical reasonings, and, 
finally, it is by physiological reasonings that health and 
disease must be explained, and not by invisible powers 
outside the body. 
By these entirely new ideas the Greeks revealed to 

the human mind for the first time the true foundations 
of the sciences which, from the time of the Renaissance, 
were to blossom and give to Europe her supremacy. 
It may be objected with truth that these foundations 
had been laid already by the Egyptians and Chaldeans. 
But, as we have already remarked, these peoples had 
simply imparted to the Greeks mathematical facts and 
empirical formule which they had been able to estab- 
lish through centuries of experience; they had never 
conceived of the possibility of creating a science worthy 
of the name. Between the fragments of knowledge 
which they discovered and the scientific conceptions of 
the Greeks there is an abyss which we may fathom by 
the following example. The Egyptians knew and made 
use of the numerical properties of the squares con- 
structed on the sides of a right-angled triangle. We 
do not know how they discovered these properties, 
but it is probable, as we have remarked before (p. 7), 
that it was in the following manner. On the sides of a 
right-angled triangle whose magnitudes are 5, 4, and 3, 
let squares be described. We can divide these squares 
into smaller squares all equal to 1? and easily prove the 
equality 25 =16 +9. This demonstration is purely 
empirical. It is so intuitive that a child can easily 
understand it. As it simply states a mathematical 
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fact, it does not rest on any group of axioms or pro- 
positions previously demonstrated. It is complete in 
itself, but it lacks generality, since the sides of the 
triangle must be whole numbers of a certain value. 
Let us take, on the other hand, the theorem which tra- 
dition attributes to Pythagoras. We see immediately 

Fia. 9. 

how different the demonstration is. The large square 
(Fig. 9) constructed on the hypotenuse, is divided into 
two rectangles ; the question being to demonstrate the 
equality of their areas with those of the squares con- 
structed on the sides of the right angle. Auxiliary 
figures, viz. pairs of triangles, intervene; this being 
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so, it is necessary to prove first that the triangles of 
each pair are equal and then that one of them is equal 
in area to the half of one of the squares, etc. The 
demonstration in this form is quite general, independent 
of particular cases, but it supposes a whole series of 
propositions previously demonstrated and which are 
rigorously linked together; for example, all triangles 
which have the same base and the same height as a 
rectangle have equal areas, which are equivalent to 
half that of the rectangle.t To establish all these pro- 
positions, they must be based on the general properties 
of the straight line and the angle, in other words, on 
axioms and definitions. These axioms or definitions 
must be logical and in no way obscure to the mind, 
otherwise the deduction would remain doubtful and 
would lack exactitude. 

Thus, the ideal which the Greeks have more and more 
conscientiously pursued is the following: to place at 
the basis of all science a number of principles which 
guarantee a strict logical reasoning, and then by their 
means to construct an edifice of consequences the value 
of which is assured by a rational deduction. Without 
insisting further it can be seen how much the Greek 
ideal of knowledge differed from that of primitive 
peoples or even of the peoples of the East. 

1 In this demonstration the investigation of the congruency 
plays. a preponderant part as M. E. Meyerson rightly remarks: 
De Vexplication dans les sciences, vol. I, p. 137 et seqg., Payot, 
Paris, 1921). 



CHAPTER I 

THE MATHEMATICAL SCIENCES 

1. THE PURPOSE AND SCOPE OF GREEK 
MATHEMATICS 

yHEN we consider the questions studied by 
the Greek mathematicians, we are at first 

\ \ astonished at their great diversity. Be- 
sides completed works, we find in the compendium 
of Diophantus the principles of a theory of numbers, 
in Apollonius the first idea of an analytical geometry, 
in Archimedes the clear conception of the infinitesimal 
calculus, and in Euclid the almost perfect application 
of a method of exposition which has remained the 
basis of more modern works.! 

Important as they are, these discoveries only 
embrace a portion of the vast field of mathematics. 
The relations of numbers and figures constitute a world 
so extraordinarily complex, that much of it is still 
unexplored by modern science. And amongst all the 
aspects of this world of relations, the Greek scientists 
have been obliged to make a choice. What have been 
the reasons and circumstances which determined their 
choice? It is on this question that we must attempt 
to shed some light. 

On the nature of the mathematical fact there is 
unanimous agreement. The Greek mathematician 
admits implicitly or explicitly that the science of 
number and space deals with ideal objects, changeless 
and incorruptible. Plato has powerfully expounded 

14 Boutroux, Idéal, p. 31. 
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this manner of thinking, supporting it by meta- 
physical arguments. The mathematical sciences can- 
not be founded on the unstable and changeful 
phenomena of the sensible world; for instance, the 
aim of geometry is the knowledge of the eternal, and 
hence it attracts the soul towards truth, and makes it 
look upwards instead of downwards; arithmetic like- 
wise has the virtue of elevating the soul by compelling 
it to reason about abstract numbers, without ever 
suffering its calculations to revolve about visible or 
tangible objects (Rep. 525 D). Thus there exists a 
world of notions or ideas which is complete in itself, and 
which has no need of support from the sensible world. 
These notions or ideas maintain between themselves 
immutable relations, the discovery of which is the 
province of the human mind. 

On this point, all the Greek geometers, whether they 
accept or reject the Platonic idealism, are in accord. 
The figures about which we reason are not those per- 
ceived by our senses. There does not exist in reality 
any point which has no parts, any line without breadth, 
or surface without thickness. The material figures aid 
the imagination and thus are a help to the reasoning, 
but they are only an accessory aid. What constitutes 
the essential character of a geometrical figure, what 
causes it to be a mathematical entity, is the connection, 
defined once for all, of its component parts. Let us 
take, for example, the circle. Having once postulated 
the notions of straight line, distance, equal distance, we 
create, so to speak, the circle ideally, declaring with 
Euclid (Definition xv, Elements, I, p. 4) that a circle isa 
plane figure, bounded by one line, and such that from 
one interior point we can draw to this line straight 
lines all equal to one another. The circle thus created 
has no definite magnitude in the imagination, for it may 
represent a microscopic surface just as well as a region 
extended as far as desired into space. The definition 
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of a circle may therefore take a concrete form in 
sensible representations, but it is not exhausted by any 
of them, and it is not these representations which 
justify its existence, for they are never anything but 
an imperfect image. As will be seen, the definition 
sheds light upon the structure of mathematical 
principles and shows them to be distinct from the data 
furnished by sensible perception. This distinction 
impresses itself on the geometer apart from the meta- 
physical reasons, always debatable, by which it may be 
justified. What is certain, is that the principles of 
mathematics, thanks to their definition, can serve as 
a basis for strict reasoning, which can never be con- 
tradicted by any sensible experience. If we take at 
random two points on a circumference and if with these 
two points and the centre of the circle as vertex, we 
construct a triangle, we can affirm that this triangle 
is isosceles and has two equal angles. This affirmation 
is directly derived from the definitions which have been 
given of the isosceles triangle and of the circle. Thus to 
the Greeks belongs the great merit of having demon- 
strated that numerical expressions and geometrical 
figures possess peculiar properties of their own, judged by 
other criteria, and dependent on other methods of investi- 
gation than the phenomena of the sensible world. But 
this does not enable us to understand what has guided 
them in their choice of the innumerable problems pre- 
sented by arithmetic and geometry. Doubtless it is 
very important to recognize the quality of the materials 
and the way to utilize them for the construction of a 
building, but it is also necessary to sort them according 
to the plan of the building. Now, the regular combina- 
tions of numbers or figures are unlimited in number. 
Analytical geometry has revealed to us several curves 
(the curve called by French mathematicians Ja courbe 
du diable, for example) of which the Greek scientists 
had not the slightest idea. Why did they stop at a 
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certain property of numbers or a certain class of figures 
rather than at any other? The standard by which 
they made their choice of figures was the construction. 
This construction, as P. Boutroux points out, has 
nothing in common with the concrete measurements of 
surveyors. ‘‘It is a rational operation by which the 
theoretical existence of the figures on which the reason- 
ing is based can be stated and proved. To attain this 
object, the most simple means evidently consist in 
constructing the figure, or rather in defining a 
theoretical process which would permit the construc- 
tion to be made if it were possible to draw perfectly.” 1 
It is quite possible, however, to conceive of a figure 
being constructed or drawn by means of straight lines 
and circles, or even by considering the path traced by 
a point which moves on a plane or in space according to 
a given law (cycloid, spiral, etc.). Here a choice need 
not necessarily be made. The Greeks, after some 
hesitation, would only admit as legitimate construc- 
tions those which could be made by means of the 
straight line and the circle, or, in concrete terms, by 

means of the rule and compass. The objects of plane 
geometry are thus clearly defined. In dealing with 
spatial geometry, however, a difficulty at once arises. 
Solid bodies cannot be represented by a plane draw- 
ing without using descriptive geometry. The Greek 
geometers did not think of having recourse to this 
expedient, and did not at first know how to get over 
this difficulty, for which Plato reproaches them very 
severely (Laws, 528 B). They ended by admitting 
a prion the legitimacy of constructions, which corre- 
spond spatially to plane constructions made with rule 
and compass ; the construction ofa plane, a straight line 
or a circle in space, and also of round bodies such as the 
cylinder, cone, sphere, generated respectively by the 
revolution of a rectangle, triangle, and circle round a 

14 Boutroux, Idéal, p. 38. 
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rectilinear axis.1_ At the same time conic sections took 
their rightful place in geometry, since they could be 
obtained, as we have seen, by the intersection of a cone 
and a plane suitably placed. Such curves as the 
quadratrix of Hippias, the conchoid of Nicomedes and 
the cissoid of Diocles remained rather on the margin 
of the pure and officially recognized science ; they were 
considered too mechanical because instruments other 
than the rule and compass were needed for their con- 
struction. 

Descartes rightly points out how arbitrary such a 
distinction is. I cannot understand, he says in effect, 
why the Ancients called these curves mechanical rather 
than geometrical. ‘‘ For if we say that it might have 
been because it is necessary to use some instrument to 
describe them, it would be necessary to reject for the 
same reasons circles and straight lines, since these can 
only be described on paper by means of compass and 
rule, which may also be called instruments.” 2 The 
argument of Descartes appears to be unanswerable. 
But then, whence came the self-imposed limitation of 
the Greek geometer? According to P. Boutroux there 
was no other reason for this but the desire to obtain 
a science which was simple and well arranged and 
consequently beautiful and harmonious. This reason 
does not seem absolutely decisive. Certainly the 
tracing of a straight line or a circumference is done by 
means of a very simple process ; besides, the straight 
line and the circumference represent perfect and 
homogeneous mathematical facts, for two arcs of the 
same circumference can be superposed just as two 
sections of the straight line, but there the simplicity 
ends. As soon as the relation of the radius to the 
circumference is sought, the problem becomes obscure. 
Hence the fruitless attempt to effect the quadrature of 

14 Boutroux, Idéal, p. 40. 
2 Geometry, Bk. IL; edit. Adam and P. Tannery, VI, p. 388. 
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the circle, which Greek geometry made from its 
beginnings and never ceased to pursue. 

The search after harmonious simplicity is not sufficient 
by itself to explain the direction of Greek mathematics. 
It seems to us that it is necessary to add on one hand 
the influence of the technical arts, and on the other the 
fear of clouding reason by bringing in mechanical means 
other than the rule and compass. The first point 
appears to be beyond question. As G. Sorel has 
repeatedly pointed out, it was certainly from the art 
of the engineer and the architect that Greek geometry 
borrowed its primary problems and, up to a certain 
point, its definitions. Thales was an engineer as well 
as a geometer ; according to a tradition, which appears 
to be true in spite of the reservations of Herodotus 
(I, 75), he diverted by a canal the waters of the river 
Halys and rendered it fordable by the armies of Croesus. 
It must not be forgotten either that the father of 
Pythagoras at Samos was an engraver of seals. These 
possessed a magical value universally recognized, and 
the glyptography of Samos was famous for its produc- 
tions! Perhaps the invention of regular polyhedra 
ought to be attributed to the stone-cutters whose 
fumblings must have preceded the reasonings of 
geometers. G. Sorel believes likewise that a consider- 
able part of the Elements of Euclid is derived from the 
art of building. He considers that the definition 
XXIII of parallels as straight lines produced to infinity 
and never meeting, is an interpolation, because it is not 
in keeping with the necessity for Greek geometry of 
avoiding the direct intervention of infinity. Euclid 
certainly ought to have defined the parallelism of two 
lines as a function of their equidistance. He was only 
translating into geometrical language the practice of 
architects, who for the construction of a wall use 

1G. Sorel, De l’utilité du pragmatisme, Riviére, Paris, 1921, 
p. 198. 
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rectangular blocks carefully cut in such a way as to be 
able to interchange them in their superposition. 
Further, the obscure definition of a straight line given 
in the Elements (definition IV) takes on a new light if 
considered in connection with the art of the mason. 
The latter in order to verify the facing of a chiselled 
surface applies to it a stone rule coated with red oil. 
If the facing is perfect, the imprint made by the rule 
appears without any break; if not, there are gaps. 
Hence, the definition of the straight line ‘‘ as a line 
lying equally between its points.’’ However, it seems 
that Greek geometry, as it progressed, was able to free 
itself from the shackles laid on it by the age-long use of 
the rule and compass, and to conquer new and vaster 
realms by adopting figures constructed by other 
means. 

If it has not accomplished this, it is doubtless because 
of the contempt in which tools fashioned and handled 
by slaves were held; 1? but it is probably also because 
the geometrical tracings obtained by these instruments 
raised problems insoluble by logic, for the following 
reasons: The instruments by which figures can be 
described mechanically may be divided into two groups: 
the first comprises the instruments whose arrangement 
remains exactly the same whilst the figure is described ; 
for example, the legs of a pair of compasses keep the 
same length and the same opening, while one of them 
traces the circle. In the same way a triangle which 
generates a cone remains identical in area and length 

1As M. E. Meyerson reminds us, Plato, speaking of the 
geometrical demonstrations into which mechanics enter, 
declares that this is to degrade geometry by making it pass, 
like a fugitive slave, from the study of things incorporal and 
intelligible to that of objects perceptible by the senses, and 
by using, besides reasoning, objects laboriously and slavishly 
fashioned by manual labour. Bulletin de la Société frangarse 
de philosophie, Feb.—Mar., 1914, p. IoI. 

) 
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of sides, and it is this identity which logically 
guarantees the properties of the figure generated. 
The instruments which form the second group are, on 
the contrary, composed of one or more parts which 
change their respective positions whilst the figure is 
described. Consequently these parts do not occupy 
the same position at the beginning and the end of the 
operation. In tracing a quadratrix, for example, the 
radius of the circle moves angularly whilst the straight 
line which cuts it moves so as to remain constantly 
parallel to itself (p. 55). How can the point of inter- 
section resulting from the combination of these two 
movements be logically defined? This intersection 
involves the indefinite divisibility of the radius and 
the straight line, and thus runs counter to the objections 
raised by Zeno of Elea. It would seem that it was a. 
reason of this kind that consciously or unconsciously 
impelled the Greek geometers to admit only figures 
constructed by rule and compass, and the solids of 
revolution generated by these figures. 

2. ARITHMETIC AND ALGEBRA 

The Greek scientists took little interest in concrete 
applications of science, and they early distinguished 
between theoretical arithmetic and the art of calculat- 
ing numerically concrete magnitudes. According to 
Plato’s saying, we must reason about numbers as 
abstractions and not about numbers which are visible 
and tangible (Rep. 252 D). Hence ‘‘ when we speak 
of Greek arithmetic, we understand the theory of the 
properties of numbers and exclude all that concerns 
calculation, namely, that which, since Plato at least, 
has been called logistic.” A scholium on the Char- 
mides, translated by P. Tannery,? endeavours to define 

125 Tannery, Science helléne, p. 369. 
*26 Tannery, Géo. grecque, pp. 48 and 49. 
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what must be understood by this science, as distinct 
from pure arithmetic. Inspired by this scholium, P. 
Boutroux justly points out that ‘“‘ Far from likening 
magnitudes to numbers, according to Greek tradition 
it was not permissible to consider as true numbers the 
numbers resulting from measurements of magnitudes, 
such as phialitic numbers, or relating to phials, melitic 
numbers, or relating to apples (or flocks). And this 
is why problems dealing with magnitudes were enun- 
ciated in concrete and not theoretical terms ; what for 
us is the ‘ solution of an equation of such or such type’ 
was formerly the solution of the problem of the oxen, 
the problem of the trees, the problem of the rabbits, 
etc.” Even in our own times schoolboys speak of 
the problem of the runners, the problem of the foun- 
tains, etc. 

At first, however, the distinction between logistics 
and pure arithmetic was not clearly defined. It is 
certain that though Euclid surpassed the knowledge 
of the Pythagorean school, he left aside many of the 
questions studied by it.2_ The Pythagorean arithmetic 
was certainly more varied in its researches and, up to 

a certain point, in its conceptions, than the arithmetic 
of its successors. The fact is easily explained. 

Although the Pythagoreans had the indisputable 
credit of laying the foundations of mathematical science 
in Greece, they were not able to free them from all 
metaphysical considerations. This fact is especially 
striking in regard to arithmetic, which was in a sense 
the corner stone of the Pythagorean philosophy, in 
whose eyes number and its properties constituted the 
basis of reality. In truth, sensible phenomena which 
are most diverse from a qualitative point of view, can 
show identical numerical relations. There is, for 

example, from the standpoint of the impression received, 

13 Boutroux, Analyse, I, p. 121. 
225 Tannery, Science helléne, p. 370. 
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a great difference between the shape of a right-angled 
triangle and that of a scalene triangle; nevertheless, 
if the bases and heights of these triangles be equal, 
their areas will be expressed by exactly the same 
number. A regular hexagon and an equilateral triangle 
appear to us very different, but the hexagon can be 
decomposed into six equilateral triangles. 

But it is not only motionless figures which can be 
measured, the movements of the stars are likewise 
subject to the law of number. And furthermore, 
musical sounds are heterogeneous as to quality with 
respect to each other, for a number of low notes cannot 
produce a high note and inversely; but there exist 
numerical relations between the quality of sounds and 
the dimension of the objects producing them. Thus 
number is at the basis of everything. To the Pytha- 
goreans it was not an abstract symbol, but a concrete 
reality,1 occupying a determinate place in space, hav- 
ing clearly defined qualities and affinities, both moral 
and physical, something like the chemical atom. 
Under these conditions numbers are identified with 
space, they not only resemble it, but they create it. 
Thus, by a suitable analysis it is possible to find groups 
of numbers which correspond to certain spatial forms. 
According to the Pythagoreans the best analysis is 
that obtained by means of the gnomon or set-square. 
As defined by Hero of Alexandria (iv Definitiones, p. 44, 
13) the gnomon is that which, being added to a number 
or figure, gives a whole similar to that to which it has 
been added.? This being so, let us suppose a set of 
gnomons (or set-squares) which fit into one another. 
If the first encloses one point, the second three points, 
etc., then it will be seen that the sum of the uneven 
numbers forms squares (Fig. 10). If the gnomons 
enclose even numbers, the result is no longer squares, 

17 Brunschvicg, Etapes, p. 34. 
420 Milhaud, PAi. géo., p. 88. 
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but rectangles (Fig. 11). We notice also that the sum 
I+2+34+.... +” of n consec- 
utive numbers beginning by one 
is a triangle (Fig. 12). 

It is not only plane figures 
which thus correspond to sums of 
numbers arranged in series, it is 
also spatial figures. For example, 
by superposing the triangular 
numbers we obtain the pyra- Renee 
midalnumbers1, then I + 3 = 4, 
then again i + 3 +6 = 10, etc., this being represented 
as in Figure 13. 

Fic. Ir. Fic. 12. 

It was probably from these arithmetical-spatial con- 
ceptions there originated the classification of numbers 
into squared numbers (obtained by multiplying a num- 
ber by itself), plane numbers (formed by two factors), 
and solid numbers such as the cube. Of this classifi- 
cation only the terms square and cube still remain. 

Further, as numbers were not abstractions, but 

beings endowed with qualities and almost feelings, 
there were some which were perfect, that is, equal to 

the sum of their divisors (for example,6 = I + 2 +3), 
and there were others which were “‘ friendly,” that is, 

such that each was equal to the sum of the divisors 
of the other. 

13 Boutroux, Analyse, I, p. 5. 
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According to G. Milhaud it is possible to explain 
by arithmetic the table of metaphysical categories 
framed by the Pythagoreans.! This table sets forth, 
on the one hand, the ideas of “ finite,” ‘‘ odd,” “ unity,” 

Fic. 13. 

“square,” etc., with, on the other hand, the opposite 
ideas of “infinite,” “even,” “ plurality,” ‘ hetero- 
geneous factors,” etc. In order to understand these 

oppositions we must remember this: if we build up 
the odd numbers with the gnomon, we obtain a square, 
i.e., a finite and complete figure, whose sides have a 

ratio “ always identical and equal to unity. On the 
n 

contrary, the construction of the even numbers by the 
gnomon gives a rectangle, a figure indefinite in this 
sense that its sides 7 and m + 1 have a ratio changing 

with the value of 7, namely: = 3 yee 
3 4 ” 4-1 

We know also that, in their arithmetic, the Pytha- 
goreans went so far as to consider that even moral 
realities were formed of numbers.? - Justice, for 

120 Milhaud, Phi. géo., p. 116 e¢ seq. 
222@ Robin, La pensée grecque, p. 73. 
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instance, was identified with the number four, the 
square representing perfect equilibrium. Nevertheless, 
in spite of their metaphysical and mystical tendency, 
the Pythagorean researches led to several interesting 
discoveries. Besides the properties of certain series 
of numbers, they have defined different types of means : 

i. The arithmetic mean such that a + b = 2m, 

m—b a 

2. The geometric mean such that m? = ab, 

a—m 

3. The harmonic mean such that eee 
m ab 

a—-m_a 
m—b  b 

But these proportions had no meaning for the 
Pythagoreans unless they were formed of whole num- 
bers; they do not apply to any kinds whatever of 
magnitudes, commensurable or not, even when these 
are proportional. However, the advance made by 
spatial arithmetic through the Pythagorean school was 
checked on the one hand by the discovery of the 

irrational V2, and on the other by the criticism of 
Zeno. Besides, the mystical speculations on which this 
science appeared to rest became more and more repel- 
lent to the minds of scientists desirous of obtaining 
positive results. The consequence was that, amongst 
the Greeks, arithmetic made little or no progress. 

Euclid, however, systematized in Books VII-IX of 
the Elements the results which had been obtained. 
He represented numbers as lengths, and deduced their 

123 Rouse Ball, History of Mathematics, I, p. 62, 



126 SCIENCE IN GRECO-ROMAN ANTIQUITY 

properties from those of geometrical figures. He 
studied the theory of rational numbers, indicated the 
rules for finding the greatest common factor and the 
least common multiple ; he also studied fractions and 
geometrical progressions and demonstrated that the 
number of prime numbers is unlimited. 

Is it to the system of numeration in use amongst 
the Greeks that their lack of progress in arithmetic 
should be attributed ? Certainly this system was not 
as practical as our own, but this was not an insur- 
mountable barrier, as is shown by the Avenarius of 
Archimedes. 

However this may be, arithmetical speculations were 
only revived in Greece by Diophantus and then in an 
algebraical form. The originality of Diophantus con- 
sists in the first place in having entitled his work 
dov0untixd (Arithmetic), and then in treating of matters 
which are logistical. This innovation was more than 
a matter of words, it brought into abstract science 
that which had formerly been considered to belong to 
concrete science ; it announced a change in form and 
method. With one exception (Opera I, p. 385) the 
numbers of Diophantus are abstract and do not relate 
to oxen or rabbits; the problems also are treated 
methodically, their solution is not merely enunciated 
without demonstration, as had been the case with the 
logisticians. 

Although Diophantus had eclipsed all his predeces- 
sors, his aim was not understood in the way he desired. 
Nicomachus, in his treatise on arithmetic, still considers 
the numbers of Diophantus as concrete. The tradi- 
tional distinction between arithmetic and calculation 
remained, although the deep abyss which separates 
them is henceforward filled up. 

As a matter of fact, the Arabs did not translate 
Diophantus until the tenth century, and it was only 

126 Tannery, Géo. grecque, p. 52. 
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in the year 1575 that he became known to the Western 
world. 

3. THEIRRATIONAL‘\/2. THEARGUMENTS OF 
ZENO OF ELEA. PROPORTIONS AND THE METHOD 
OF EXHAUSTION. INTEGRAL CALCULUS.? 

The arithmetical realism, naively proclaimed by the 
Pythagoreans, was checked by the discovery that in 
a square the diagonal and the side are incommensurable. 
If space be number or ratio of numbers, this discovery 
is disconcerting. The Pythagoreans doubtless did not 
pretend to estimate the number of points which com- 
pose a segment of a straight line, but they affirmed 
that this number exists, and that it is necessarily a 
‘whole number, since the point is indivisible. Between 
two straight lines A and B of unequal length, there 
must be the ratio A/B, in which A and B, representing 

a sum of points, are necessarily two whole numbers. 
This ratio leads in fact to a more simple ratio ”/N, 
if a suitable unit of measurement be chosen to estimate 
the lengths A and B, since this now plays the part of 
common factor. Let us now suppose that the sides of 
a square each have Io times the unknown number of 
points. According to the so-called theorem of Pytha- 
goras, the square described on the diagonal will contain 
200 times this number. The diagonal must therefore 
be equal to a whole number which, multiplied by itself, 
gives exactly 200. Now 14 is toosmall, for14 x 14 = 
196, and I5 is too great, since I5 X 15 = 225. Then 
let us take the side of a square equal to not Io times 
but 100 times, to 1,000 times, to ” times the number 
of points, etc. Whatever be the figure chosen, we 
shall never find for the diagonal a number which 

123 Rouse Ball, History of Mathematics, I, p. 118. 
See our book, Logique et Mathématiques, Delachaux, 

Neuchatel, 1900, and our article in the Revue de Metaphy- 
sique et Morale, July 1911, ‘‘ Infini et science grecque.” 
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when squared will exactly equal 2 x 10%. Of this 
fact the Pythagoreans were able to give the following 
demonstration. Let a be the diagonal and 6 the side 
of the square. These two numbers may be supposed 
to be prime to one another, for if they were not, they 
could always become so by the suppression of their 
common factors. From the equation a? = 2b? we 
must conclude that a? and consequently @ is an even 
number. Since a and 6 are prime to one another, 
6 can only be odd. But if a be even, we can postulate 
a = 2a, and the original relation becomes 4a,? = 26? 
or 2a,2 = b?. In this case 0 is even, but then a and 0 
are no longer prime to one another, which is contrary 
to the hypothesis. The side and the diagonal of a 
square are thus incommensurable. 

Although disconcerted by this discovery, the Pytha- 
- goreans regarded it as an isolated instance; it did not 
cause them to modify their arithmetical-spatial con- 
ceptions, and they were not able to glimpse the 
relationship between the continuum and _ infinity. 
Zeno of Elea was the first to propound this problem 
with precision. According to a generally accepted 
opinion, he desired, in discussing this question, to prove 
first of all the impossibility of motion, and, indirectly, 
to deny the plurality of Being. But, as we have seen, 
a passage of Plato (Parmenides, 128 C) shows that Zeno 
simply sought to oppose the idea of plurality as 
affirmed by the Pythagoreans. The testimony of 
Plato is the more convincing since the argument of 
Zeno has no significance if it denies the fact of motion, 
but is, on the contrary, decisive in showing that motion 
is incompatible with the hypothesis of plurality. Of 
this argument briefly summed up by Aristotle (Phys. 
239 b 9) we only possess the parts which deal with 
continuity in its relations with infinity. 

According to Zeno it must be admitted that either 
the division of space, time and motion can be continued 
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indefinitely or else that it has a limit. Let us suppose 
in the first place that the division be indefinite. In 
this case a moving body cannot traverse the length 
AB because before reaching the point B, it must 

traverse the length = and, before that, BS = etc. 

The dichotomous division of AB being infinite, one 
cannot see how the displacement of the moving body 
can be produced. There is the same difficulty if we 
consider the relation between two objects in motion. 
Achilles runs ten times faster than a tortoise, but 
if he gives it a start of ten yards he will not be able 
to overtake it. The space he would have to traverse 
in order to do this is represented by the sum of the 
following stages, the length of which certainly dim- 
inishes but never becomes zero : 

1) eee gee ee ee tae ee 
TO" 10 10 

Each time that Achilles traverses one of these spaces 
the tortoise traverses the following one. It may be 
objected, it is true, that the meeting point between 
Achilles and the tortoise can be calculated by the well- 
known formula giving the limit of the sum of an infinite 
number of terms of geometrical progression, of which 
the first term is a and the common ratio 7 is less than I, 

IO 
o— —-— that is S = = 11% yards. 

I—?7 I 
Bae) 

But, as Zeuthen ! has pointed out, the very reasons 
appealed to by Zeno show that even in his time it 
was known how to effect this summation. What they 
disputed was precisely the legitimacy of the formula 

ee 
I—?7 

129 Zeuthen, Histoive des mathématiques, p. 54. 



130 SCIENCE IN GRECO-ROMAN ANTIQUITY 

since, in order to establish this, it is necessary, in 

a ar 

D8 af pS 
S = 

ar” 

I—y?7 

point is it right to do this? That is the question. 
Instead of admitting the possibility of an infinite 

division, let us suppose that this division has a limit 
and that there exist ultimate elements of space, time 
and motion (whether in finite or infinite number, it 
matters little). To this Zeno replies with the paradox 
ofthearrow. Theextremitiesand the body of an arrow 
in flight must coincide at each instant with the points 
which compose its trajectory; but if there be a coin- 
cidence for however brief an instant of time, there is 
immobility. Then the movement of the arrow is re- 
duced to a sum of instantaneous immobilities, which 
is absurd. If we attempt to avoid this objection by 
affirming that each instant corresponds, not to a certain 
position of the arrow, but to the passage from each 
position to the next, Zeno appeals to the argument 
of bodies which moving inversely to one another cross 
one another’s paths, and he shows that the speeds 

supposed to be different are in reality equal, since by 
dichotomy the sum of the instants of which these 
speeds are composed can always be reduced to the 
same number, that is to infinity. 

The arguments of Zeno in fact amount to the proof 
by reductio ad absurdum that a geometrical body is 
not a sum of points, that time is not a sum of instants, 
that motion is not the sum of passages from one point 
to another. They had the result of establishing once 
for all the infinite divisibility of space. Henceforward 
the discussion relating to divisibility dealt with matter, 

to neglect the term as insignificant. Up to what 
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and atomism could take shape, thanks to the work of 
Leucippus and Democritus. 

From a mathematical point of view the problem to 
be solved is the following: no longer to identify dis- 
continuous number with continuous magnitude, and 
yet to find a means of adapting number to the study 
of geometrical figures. This problem is difficult, for 
the reasoning of Zeno seems to be faultless, and the 
impossibility of reconciling it with the data of spatial 
intuition seems to condemn for ever the rational and 
direct use of mathematical infinity. On the other 
hand, in practical applications, certain sophists such 
as Antiphon affirm, on the basis of these reasonings, 
an identity between curvilinear and rectilinear elements 
which is inacceptable. 

Thus, in spite of the efforts of Aristotle to render 
legitimate the notion of continuity, the confidence of 
Greek mathematicians in directly infinitesimal specu- 
lations was for ever shaken. Besides, the formule 
enunciated by Aristotle were not of any practical use 
in mathematics; they belonged to a treatise on physics 
which had in the highest degree a metaphysical 
character. To Aristotle, indeed, the question which 
presented itself is the following: “If infinity be a 
given reality, the enumeration of all the whole numbers 
must have a limit, which is logically impossible (Phys., 
204 b 4-10). But to reject infinity is to declare that 
time has a beginning, that magnitude is discontinuous 
and that the power to reckon has a limit (Phys., 206 
a Q-I2). To remove these difficulties it is necessary, 
according to Aristotle, to distinguish between magni- 
tude and number in the problem of infinity. An 
infinite magnitude could no more exist than an in- 
finite space. As a matter of fact, space could not 
extend beyond the material world of which it forms 
the boundary (Phys., 212-31). If the universe were 

1Cf. 21 Milhaud, Etudes, p. 120. 
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unlimited, it would not be able to accomplish its daily 
revolution in 24 hours. Further, what is infinite is 
imperfect, unfinished, and unthinkable ; yet the world 
is a finite whole which can be conceived in the mind. 

But if magnitude be not infinitely great, it is per 
contra infinitely divisible, and, in this sense, there is 
an infinity of magnitudes, but only potentially and not 
actually, since the division is never completed. Con- 
tinuity must be defined thus: that which is divisible 
into parts which are always divisible (de coelo, 268 to 6). 
If this be so, the arguments of the Eleatic school 
against the reality of motion lose all their force, for 
it is not necessary that the possible divisions of time 
and space should be performed in order that motion 
may really take place. 

With regard to number, Aristotle adopts a quite 
opposite attitude. He admits the virtual existence of 
an infinite number, in this sense that after each whole 
number there is always another. But a numerical 
infinitely small is inconceivable, since unity is an 
element below which it is impossible to go. 

To sum up, Aristotle considers all magnitude as 
finite, but he admits its infinite divisibility, thus 
rejecting spatial atomism. On the other hand, he 
affirms the extensible infinity of number, but not its 
infinite divisibility. 
We see that though the views of Aristotle have 

undeniable metaphysical interest, they do not present 
any method of symbolizing and using, mathematically, 
continuity and infinity. From this point of view the 
problem discussed by Zeno remained untouched. 

In order to avoid running counter to this problem, 
Greek science, with Eudoxus, had recourse to strata- 
gem. This geometer begins by enunciating a theory 
of proportions which, taking into consideration geo- 
metrical continuity, is applicable to all ratios of mag- 
nitude, whether commensurable or not. If (A, B) 
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and (C, D) be two pairs of magnitudes, the proportions 
A/B and C/D will be equal, if, whatever may be the 
whole numbers m and #, we always have 

mA mC 

PB pD 
In this way the ratios of magnitudes become geo- 
metrical, and no longer simply arithmetical, as they 
had been to the Pythagoreans. 

Having established this point, Eudoxus laid the 
foundations of an infinitesimal method by which it 
would be possible to pass gradually from a regular 
figure to the figure which circumscribes it. This 
method, called the method of exhaustion, is based on 
the following principles which are derived from the 
lemmas formulated for geometrical proportions.1 

1. If two magnitudes a and 0b be unequal, the 
lesser repeated a sufficient number of times (n) will 
end by equalling or exceeding the greater. In other 
terms if a < 6, na > b. 

2. If from a magnitude there be taken more than its 
half, then from the remainder a part greater than 
half of this remainder, and so on indefinitely, there will 
be finally obtained a remainder less than any given 
magnitude. 

It was by taking these principles as a basis that 
Eudoxus demonstrated, amongst other things, that 
circles have areas proportional to the squares of their 
diameter. The proposition is true for regular figures 
of 4, 8, 16, 32, etc., sides which are successively in- 
scribed in the circles. Now, at each operation, the 

difference between the area of the circles and that of 
the new polygons inscribed is diminished by more than 
half. It tends to become zero, so that the properties 
established for polygons hold good for circles. 

The method of exhaustion was taken up and given 

126 Tannery, Géo. grecque, p. 96. 
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new life by Archimedes, who made successful and 
fruitful applications of it. Eudoxus had contented 
himself with showing by what lemmas a certain figure 
may be considered as the limit of another figure in- 
creasing progressively ; but he did not know how to 
evaluate the successive terms of this progression. It 
was Archimedes who first discovered the practical 
means of effecting this calculation. He succeeded, for 

instance, in determining the circumference of a circle 
by defining it as the boundary of two polygonal 
perimeters, inscribed and circumscribed, of which the 
number of sides is indefinitely increased. 

Fic. 14. 

By an analogous process he was able to calculate 
curvilinear areas or areas bounded by curves. He 
showed that any segment bounded by a straight line 
and a parabola is equal to four-thirds of the triangle 
having the same base and the same height as the 
segment (Fig. 14). In this demonstration the passage 
to the limit is not directly used. In order to avoid 
this Archimedes proves that it would be absurd to 
suppose the area of the parabolic segment to be greater 
or less than four-thirds of the triangle having the same 
base and height. 

The method of exhaustion rests on a reductio ad 
absurdum which proves its perfect logical exactitude. 
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This same exactitude prevented the Greek geometers 
from looking in another direction for the solution of 
the problem of areas and curvilinear volumes. By a 
stroke of genius Archimedes invented a method of 
integration based on the comparative study of the 
static moments of two figures, and which necessitates 
for this study the use of an infinite number of lines 
or parallel planes ; the comparison of suitably selected 
sections then gives the equation of equilibrium between 
the known surface or volume of one of the figures and 
the unknown surface or volume of the other. Thus 
to have equilibrium with a sphere, it is necessary to 
have four cones having as base the great circle and 
as height the radius of the sphere. The sphere has 
therefore a volume four times greater than that of the 
cone constructed with its radius. Archimedes, how- 
ever, would not acknowledge any power of demon- 
stration in this mechanical method, whose results, to 

be valid in his eyes, had to be confirmed by exhaustive 
reasoning. In fact, the Greek geometers considered 
that it was only by this reasoning that the dialectic 
of Zeno could be successfully refuted. On the one 
hand, the condition imposed on the difference (line 
or surface) of always diminishing by more than its 
half ensures that this difference can become less than 
any given quantity, after a finite number of operations. 
On the other hand, the method of construction em- 
ployed in each problem ensures that the law of diminu- 
tion is really obeyed by the decreasing magnitudes ; 
hence the terms which form the numerical representa- 
tion of these constitute a series the convergence of 
which is evident and has no need of proof. In every 
way the direct use of infinity, which results from 
dichotomy, and which Zeno had criticized, is avoided. 

However, the method of exhaustion thus understood 

remains difficult to manipulate. To make its applica- 
tion general, it would have been necessary to examine, 

10 
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as Cavalieri, Fermat and specially Pascal did later, 
the nature of the progressions which represent the 
decomposition of the geometrical figure. It would 
have been necessary to establish, once for all, the con-_ 
ditions which these progressions must satisfy in order 
to be used in the solution of any problem of quadrature. 
By following this path, the Greek geometers would 
perhaps have discovered some device similar to that 
used by Newton and Leibnitz, and they would have 
brought into their method a generalization of which 

_ they possessed the essential elements. But, being 
desirous above all to avoid the direct use of infinity, 
they were so intent on ensuring the rigour of the 
method of exhaustion in each particular case “ that 
it left them no room to develop, beyond the need of 
the moment, the methods they employed to prove 
their results, or to create new methods.” 2 Already 
necessitating lengthy demonstrations for relatively 
simple cases, the method of exhaustion became most 
complicated when used for the integration of surfaces 
and volumes of which the elements are connected by 
complex relations. So it is not astonishing that the 
successors of Archimedes, adhering to this method, were 

not able to carry on the brilliant work of their master, 
notwithstanding the time and knowledge at their 
disposal. 

4. GEOMETRICAL ALGEBRA 

Although the way opened up by Archimedes was 
but little followed, the comparative study of lines, 
surfaces and volumes nevertheless made real progress 
by means of what may be called geometrical algebra. 

The Pythagoreans had already employed geometry 
in the study of the numerical properties of magnitudes 
regarded as commensurables, and thereby, as we have 
seen, they were restricted in spatial arithmetic. 

+29 Zeuthen, Histoire des mathématiques, p. 142. 
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The discovery of the irrational V2 dealt a first blow 
to this conception, which was completely shaken by 
the arguments of Zeno of Elea; but, before even the 
theory of proportions had been established by Eudoxus, 
the Greek geometers had succeeded in generalizing 
the quantitative study of magnitudes and in creating 
thus a kind of geometrical algebra. Their method was 
as follows : 

The representation of a magnitude by the length of 
a segment can play the same part as the symbolical 
letters of algebra. This being so, in order to subtract 
or add two rational or irrational magnitudes, it is 
sufficient to represent them by segments, and then 
to place one of these segments on the other or on its 
extension. 

The quantities which we call imaginary or negative 
certainly cannot be represented in this way; still, in 
many cases, the variations of the figure lend themselves 
partly to the same generalizations as the use of negative 
quantities in algebra. 

As to the multiplication of magnitudes, in the direct 
sense, it is nonsensical, but it is possible to represent 
it indirectly by means of a rectangle whose sides are 
formed by the segments representing the two magni- 
tudes to be multiplied. 

In this manner a second geometrical expression of 
magnitudes is obtained, that is, as rectangular or 
square surfaces. To add or subtract them in this new 
form, it is necessary to give them a common side; one 
of the rectangles, whilst keeping the same area, is 
then transformed in such a way as to enable it to 
be applied exactly to the other. This operation is 
performed by means of the following proposition: the 
lines parallel to the sides of a rectangle, which intersect 
on one of the diagonals, divide this rectangle into 
four others, of which two are equal, that is, those which 
do not cross this diagonal (Fig. 15). 
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For example, to add the rectangle B to the rectangle 

A of which one side is 0, it is necessary to find a rect- 

angle C (with sides b and x) which, being equal to B, 
can be applied to A by 
the common side 0 (Fig. 
16). 
< solve this problem 

it is necessary to proceed 
in the following way: On 
the extension of one of the 
sides of the rectangle B 
(Fig. 15) take the length 3, 
then from the extremity 
of this side thus produced, 
draw the new diagonal to 

the point where it cuts the other side of B likewise 
produced. We have thus all the elements for con- 
structing the rectangle C, which evidently fulfils the 
requirements of the problem and can be applied to 
the rectangle A. This construction is called zagaBody, 
or the application of surfaces. When made as we 
have just seen, it is simple, but it may be elliptic 

or hyperbolic. When elliptic, it corresponds to the — 
following problem: on a given segment a construct a 
rectangle ax which when diminished by an unknown 
Square x* is equal to a given square 0b? (Fig. 17). 
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In modern language the problem is expressed by 
the equation 

ay — x7 = 0* 

or again, by adding and subtracting . 

2 2 

See + #8 — ax) = 04 
4 4 

(y-G-9)'-" 
The problem leads therefore to the construction of a 

2 re) 
-_——____ 2 

Fic. 17. 

difference of squares. By putting the equation in the 
form 

(y= G-9! 2 2 

the length é — x) and the length % are easily found 

by means of the theorem of Pythagoras. 
Let a be the given segment and 0 the side of the 

given square. On one of the extremities of 5, raise 
a perpendicular, then from the other describe an arc 

of circle of radius - which will cut the perpendicular. 

In this way we find the side . — x and the length 

x% (Fig. 18). 
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Once x is found, it is easy to construct the rectangle 
2 2 

ax and the difference of the squares @) and G — x) 

(Fig. 19). 

Fic. 18. Fic. 19. 

It can be seen that the rectangle ax, diminished by 
the square x? is equal to a gnomon whose surface is 
equal to the given square b? (Fig. 20). 

The problem was afterwards generalized in the 
following manner: to determine two quantities of 
which the sum a is known and the product is con- 

ae 

Fic. 20. 

sidered as equal to a square 6%. To find the unknown 
value % one can proceed as follows: In a semi-circle 
of radius a inscribe the right-angled triangle of which 
b is the perpendicular dropped from the vertex of the 
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right angle (Fig. 21). Under these conditions we have 
6? = % (a — x) and when the roots of the equation are 
both positive they can immediately be found. 

It can be seen that the treatment of magnitudes by 
geometrical representations is generally equivalent to 
their treatment by algebra. There is, however, a 

difference. Geometry is always fundamentally quali- 
tative, while algebra is quantitative.} 

pe -cy 

Fic, 21. 

Whilst the elliptic application is by defect, the 
hyperbolic application is by excess and corresponds 
to the following problem: on a given segment a@ 
construct a rectangle ax which when increased by the 
unknown square x? is equal to a given square 6?. 
This problem is equal to the solution of the modern 

a 

equation ax + %? = b? or by adding and subtracting at 

2 2 

an Sy ee = alge = 52, 
4 4 

a 3 aye 
= —(—) = 0%, Cig) 

It is necessary, then, to construct as before a 
difference of squares. By means of the theorem of 

14 Boutroux, Idéal, p. 74. 
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Pythagoras we quickly find € + «) and consequently 

x (Fig. 22). The rectangle ax is then easily obtained ; 

Ss 
Fic, 22. 

the square x? is then added 
to it externally, instead of 
being taken away as in the 
elliptic application (Fig. 23). 

Without labouring the 
point, it can be seen that 
the Ancients have treated all 
the forms of the equation of 
the second degree which give 
positive roots; for them 
there could be no question - 

of other roots, since they had no conception of them. 
The constructions which we have just mentioned 

are of no use when problems arise concerning the 
quadrature of the circle, the trisection of the angle 

to|Ay 

Fic. 23. 

and the duplication of the cube, which cannot be 
solved by means of the circle and the straight line. 
Recourse had then to be made to intercalations. 

129 Zeuthen, Histoive des mathématiques, p. 39. 
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For example, to divide the angle ABC into three 
equal parts (Fig. 24). First AC is drawn perpendicular 
to BC and to AE which is parallel to BC ; then between 
AC and AE is intercalated DE = 2AB in such a way 
that its prolongation passes through B. F being the 
middle of DE and the triangle ADE being a right- 
angled triangle capable of being inscribed in a semi- 
circle of radius FE, we have radius AF = radius 
FE = AB by construction. The triangle ABF is 

A a3 

B Cc 

Fic. 24. 

isoceles; the angle ABF = AFB = twice the angle 
AEF = twice CBD. Hence 

angle CBD = 3 angle CBA.4 

By intercalation must therefore be understood “‘ the 
construction of a segment of a straight line of which 
the extremities are situated on given lines and which, © 
when produced, passes through a given point. This 
segment can easily be obtained by means of a ruler 
(or piece of folded paper) in the following manner. 
On the ruler two marks are first made, the space 
between them being equal to the length of the given 
segment, then the ruler is turned round a fixed point 
and moved at the same time in such a way that one of 
the marks follows exactly one of the given lines. This 

1Pappus, Hultsch Edition, Book IV, Prop. 32. 
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movement is continued until the other mark comes 
on the second given line.” 4 

There was very probably a time when intercalation 
was admitted as a means of construction, together 
with the rule and compass, but it was soon rejected 
for reasons we have indicated (p. 119). It became 
then necessary to have recourse to conic sections, when 
the rule and compass were obviously insufficient. The 
consequence of the study of these sections was the 
development of the fruitful conception of ‘‘ geometrical 
loci,’ for a conic section may be considered as the 

| 

| 
| 

ae 
Fic. 25. 

locus in which a cone and a plane meet. Hence there 
arose the expression of ‘‘ solid loci,” since the cone 
is a volume. 

However, even in its most developed form, the theory 
of conic sections is closely connected with the first 
works on geometrical algebra. This is strikingly 
shown by the works of Apollonius.? 

In these, the study of magnitudes and their ratios is 
always done by geometrical operations, only the field 
is enlarged thanks to the theory of proportions and 
similitude. This allows of the construction of surfaces 

129 Zeuthen, Histoive des mathématiques, p. 66. 
*3 Boutroux, Analyse, p. 491 et seq. 
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which are similar (and not equal) to given surfaces. 
For example, to construct on a given segment a a 

rectangle ax, which, diminished by a rectangle similar 
to a given rectangle cd, is equal to a given square 62, 
we must have (Fig. 25): 

BB. “DDoS *% é 
= 7 7 hence DB = 

AD is then equal to a — oa and the unknown rectangle 

has for surface x (@ 5); but as this must be equal to 

b?, we have finally the equation of condition 

ax —Sx = D2, 

The theory of proportions also enables the magni- 
tudes which correspond to a given problem to be found 

Fic. 26. 

in a more direct manner. For example, to construct a 
square x*, equal to a given rectangle ab, comes to 
finding a mean proportional between a and 8, which is 
easy. Taking as diameter the segment AB of the 
length a + b (Fig. 26), describe a semicircle, then at the 
extremity of a at H, raise a perpendicular HD = x. 
The triangle ADB inscribed in a semicircle is right- 
angled and we have x? = ab. 
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We can generalize the scope of this problem and say 
that the geometrical locus of the points D such that the 
perpendicular DH to AB is the mean proportional 
between the two segments which it determines on this 
straight line, is a circumference of diameter AB. 
We can also, and it is here that conic sections inter- 

vene as geometrical loci, conceive of a more complicated 
relation of measurements ; for instance, let us suppose 
that the segment AB being given, the segment DH is 
the side of a square subjected to the condition of being 
equal to a rectangle which, when applied to another 

Fic. 27. 

given segment LM, is at the same time diminished by 
a rectangle similar to the rectangle of dimensions LM 
and AB (Fig. 27). 

To find any point of the locus, on the given segment 
AB, erect at its extremity a perpendicular AM equal to 
the second given segment LM. Construct the rectangle 
of the dimensions AB and AM, having MB as diagonal. 
From any point H draw a parallel to AM; this, at the 
point where it cuts the diagonal MB, determines the 

rectangle which, similar to the rectangle AB x AM, 
must be taken away from the rectangle of the dimen- 
sions AM and AH, applied to the segment AM (= LM). 
Then there only remains to find the side DH of the 
square equal to the rectangle AH x AN. 
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It can be demonstrated that the locus of the points 
satisfying the enunciation of the problem is an ellipse. 
If AB = 2a, LM = 2), AH = x, HD = y, we shall 
have, according to the equation of condition (p. 145), 

PAC nee 2p 2 2 P 2 — ened — — _ be y px ieee or y 2px an 

When the rectangle to which the square DH? is 
equal is to be iucreased, instead of diminished, by a 

rectangle similar to the rectangle of dimensions AB 

Fic. 28. 

and LM, the geometrical locus is no longer an ellipse, 
but a hyperbola (Fig. 28). 

Finally if the rectangle is not to be either diminished 
or increased but simply applied to the segment LM, we 
have the parabola. 

Apollonius was of the opinion that whatever the conic 
section considered might be, the segment LM must 
always be perpendicular to the extremity of the 
segment AB even if the half chord HD be oblique 
in respect to the diameter AB. Hence the name of 
latus rectum (right side), which was given to it. For 
this reason, geometrical algebra renders the same ser- 



~ 
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vices as those rendered later by analytical geometry. 
‘‘ Whilst we now express the fundamental property of 
a curve by an algebraical equation, Apollonius repre- 
sented it by a figure; and owing to the fact that this 
auxiliary figure is drawn at right angles to the axis of 
abscissee, even when the ordinates cut this axis at 
another angle, it always remains in some degree 
independent of the figure for the study of which it is 
used.? 

Another fact, no less remarkable, was brought to 

D 
‘ 

re 

Fic. 29. 

light by the Greek geometers (Pappus, Hultsch edit., 
book vii, prop. 238). Given an infinite straight line 
DD’ (Fig. 29) and a point F, it can be demonstrated 
that the geometrical locus of the points M such that 
the ratios of the distances MF and MH from M to the 
point F and to the straight line be constant and equal 
to a given number, is a conic section. Inversely, being 
given any conic section, it is always possible to find a 
straight line and a point F which will allow the ratio 
in question to be established with regard to each point 

129 Zeuthen, Histoire des mathématiques, p. 168, 
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2 the curve. Further, according as this constant ratio 
Fy, 

mau smaller than, greater than, or equal to 1, the conic 

is an ellipse, a hyperbola or a parabola. 
It is useless to enter into the details of the demon- 

strations, our aim being merely to show that the geomet- 

rical algebra of the Greeks, even in their most perfect 
works, remained faithful to its primary inspiration. 

Let us add also that it was owing to conic sections 
that the study and investigation of loci was generalized. 
Among the problems considered by Pappus there are 
a number of this kind: from a point P drop the 
perpendiculars a, 6, c, d on four straight lines. Find 
the locus of the points P such that the rectangle ab may 
be equal (or similar) to the rectangle cd (Fig. 30). 

13 Boutroux, Analyse, I, p. 250. 
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The same problem may be stated in respect of six 
straight lines; the given ratio then relates no longer 
to areas but to volumes. The search for the geometrical 
locus then becomes very difficult by means of the 
methods known to the Ancients. Beyond six straight 
lines, they could not conceive that the problem could 
even be considered (Pappus, Hultsch edit., p. 680, 
14). We know how Descartes by the help of analy- 
tical geometry surmounted the difficulties which had 
arrested their progress, and how he succeeded in solv- 
ing in its generality the problem stated by Pappus. 

5. THE ELEMENTS OF EUCLID—METHODS OF 

DEMONSTRATION—AXIOMS AND POSTULATES 

It was not without difficulty that the Greek philo- 
sophers began to realize the rational structure of 
mathematics. As Proclus says, “ It is difficult, in every 
science, to choose and to arrange in suitable order the 
elements from which and to which all the remainder 
proceeds. Of those who have attempted this, some 
have enlarged their collection, others have diminished 
it; some have used abridged demonstrations, others 
have lengthened indefinitely their demonstrations ; 
some have avoided the reduction to the impossible, 
some, proportions; others have imagined prelimin- 
ary developments in opposition to those who reject 
first principles; in a word, the various authors 
of Elements have invented a number of different 
systems. 

“In such a treatise, it is necessary to avoid all that 
is superfluous—it is an impediment to the student ; 
to bring together what is connected with the subject— 
an essential point for Science ; to aim chiefly at clear- 
ness and conciseness—for their opposites perplex the 
intelligence ; to seek to give the most general form to 
theorems—for the detail of instruction in particular 



THE MATHEMATICAL SCIENCES I51 

cases only renders knowledge more difficult of attain- 
ment. 

“ From all these points of view, it will be found that 
the elementary treatise of Euclid surpasses any other : 
if its utility be considered, it leads to the theory of 
primordial figures ;! its lucidity and regular chain of 
reasoning are ensured by its progression from the most 
simple to the most complex, and by basing the theory 
on common ideas; the generality of the demonstra- 
tions, by the choice of the starting-point in the problems 
to be dealt with, in the theorems which set forth the 
principles’ (Proclus, Comm. Eucl. I, p. 73, 15 et 
seq.).? 

The elementary treatise of Euclid is indeed a model 
of truly rational science. It begins by a collection of 
primary propositions which are enunciated in such a 
way as to make them universally acceptable and which, 
although as limited in number as possible, are sufficient 
to secure the construction of the whole mathematical 
edifice. This construction proceeds from the simple to 
the complex by way of demonstration and resolution 
of problems. It begins by establishing the properties 
of the most elementary figures, then by their means 
it demonstrates the properties of more and more com- 
plex figures. In this way the work of synthetic 
geometry is accomplished, and this work must be 
logically unassailable. 

In dealing with the primary propositions, the 
Elements, as they have come down to us, distinguish 
between definitions and hypotheses (postulates and 
axioms). 

The definitions (601) define the meaning and limits 
of the concepts used. The postulates (aitijuata) 
demand that certain constructions (for example, to 
draw a straight line between two points) shall be 

1 Polyhedra composed of material elements. 
£ Quoted from 26 Tannery, Géo. grecque, p. 142. 
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granted as possible without requiring proofs. The 
axioms or common notions (xowai évvowm) are truths 
which cannot be demonstrated but are self-evident (for 
example, the whole is greater than the part). It 
appears, however, that Euclid only admitted two kinds 
of primary propositions, definitions and postulates, 
and that he classified as one or the other propositions 
which were afterwards called axioms. This question is 
of secondary importance; it is of greater interest to 
examine whether the primary propositions of the 
Elements are in agreement with the conditions laid 
down by Euclid himself, and whether, on the other 
hand, they satisfy the exigencies of the modern use of 
axioms. With regard to the first point, it must be 
noted that the form of the definitions often leaves 
something to be desired. Such is the definition of the 
straight line, the empirical origin of which is purposely 
concealed, thus rendering it obscure.t_ Further, certain 
definitions, such as that of the diameter, contain useless 
elements. If the diameter be defined as passing 
through the centre, it is superfluous to add that it 
divides the circle into two equal parts. 

As to the relation of the Elements to the modern 
theory of axioms, the following statements may be 
made : 

Firstly, the primary propositions must be compatible, 
that is to say, not contradictory to each other, other- 
wise the consequences deduced from their combinations 
would necessarily be contradictory. The Elements 
fulfil this condition without proving it theoretically. 

Secondly, the enunciation of a primary proposition 
must be rigorously complete. When we say that the 
whole is greater than the part, we must add, which 
Euclid has not done, that such an enunciation only 
concerns finite magnitudes and numbers. We know, 
in fact, that in infinity the part is equal to the whole ; 

1See page 119. 
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for instance, the summation of the series of even whole 
numbers is equivalent to the summation of all whole 
numbers, since between the terms of these two sum- 
mations we can establish a univocal and reciprocal 
correspondence. It is easy to verify this by writing 
the two series as follows: 

se wey, ee 7 ree 
ZEA Olen = ee, 

To every whole number a corresponding even number 
can be found ad infinitum. 

Thirdly, the primary propositions must be in 
sufficient number, without any being superfluous. 
The Elements, in spite of their endeavour to be 
~complete, sometimes leave much to be desired in this 
respect. Often they omit to justify by an axiom facts 
regarded as evident, even when they are not derived 
from the principles primarily postulated ; for example, 
the following statement: if A, B, C be three points 
belonging to the same straight line and if B be between 
A and C, it will also be between C and A.} 

Finally, it is essential that the primary propositions 
considered necessary for the building up of geometry 
should form a logically indissoluble whole, that is com- 
posed in such a way that not one part can be suppressed 
or altered without involving the ruin of the whole edifice. 
If the suppression or change of one of the primary 
propositions should lead to consequences which, 
without being logically absurd, were simply different 
from what they were before, the necessary conclusion 
would be that various types of geometry are equally 
possible, that is to say equally true from a logical point 
of view. 

This problem did not present itself to Euclid; but 
he has intuitively understood its importance, by 
claiming as a postulate that from a point taken outside 

15 Boutroux, Les mathématiques, p. 73. 
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a straight line only one parallel can be drawn to it. 
Seeing the hypothetical character which he gives to 
this proposition, Euclid has had regard to the exigencies 
of the modern theory of axioms, but if, as he believed, 
only one geometry is possible, his hypothesis would 
appear strange and superfluous, for one would neces- 
sarily be able to affirm the singleness of the parallel 
and deduce from it the definitions already postulated 
of the straight line, the plane and angles. It would 
seem that he must speak of a theorem of parallels and 
not of a postulate if logically there only exists but one 
geometry. 

The successors of Euclid were of this opinion, and 
not without reason, and this is why they endeavoured 
to demonstrate the proposition which Euclid had 
enunciated as a hypothesis, but all their attempts in 
this direction were in vain. 

In the nineteenth century they surrendered to 
evidence. It is possible to abandon the postulate of the 
parallels, whilst keeping the other primary propositions. 
Geometries can then be constructed which have other 
properties than that of Euclid and which for this reason 
are called non-Euclidean (Lobatschewsky, Riemann). 
These geometries, the truth of which is guaranteed by 
logic, deal with mathematical facts (lines, surfaces, 
angles) which are real and in no wise fanciful, although 
we cannot picture them by intuitive perception. The 
field of geometry is therefore vaster than Euclid sup- 
posed, but although he did not entirely construct the 
modern theory of axioms, to him belongs the merit of 
having established it upon a permanent basis. 

The primary notions having once been elucidated, 
it is possible by logical deduction to link to them a series 
of propositions entirely derived from one another. 
These propositions are classified and distinguished 
according to their nature. There is first the theorem 
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or principal proposition ; then the lemma, a secondary 
proposition intended to facilitate the demonstration of 
a theorem to follow; and the corollary, a direct conse- 
quence of a theorem which has just been established. 

But how are these propositions to be demonstrated ? 
Although all agree as to the method to be followed, there 
is a divergence of views-as to the interpretation to be 
given to the demonstration. At the time of Plato 
and probably of Euclid also 1 there were subtle discus- 
sions on the question whether mathematical pro- 
positions must be considered as problems to be solved, 
or on the contrary as theorems to be demonstrated. 
Proclus (Comm. Eucl., I, p. 77, 15 et seg.) sums up the 
discussions on this subject in the following way. The 
Platonists such as Speusippus and Geminus held that 
figures and their properties exist in the eternal world 
of ideas independently of the construction the mathe- 
matician can make of them ; the latter can only make 
manifest to the understanding what already existed. 
For example, equilateral triangles are such by 
definition, that is to say, by an eternal relation of 
ideas, and the fact of constructing them cannot add to 
or take away anything from their existence. There- 
fore it is not correct to speak of problems, but only 
of theorems (objects of contemplation). Some philo- 
sophers, such as the mathematicians of the school of 
Menaechmus, were of the opinion that all should be 
regarded as problems; others said with Carpus that 
problems as a class precede theorems, because it is by 
the former that the subjects are found to which belong 
the properties to be studied. 

Finally, many considered as a theorem that which 
contained only one possibility, and as a problem 
that which was capable of several possibilities. For 
example, “to propose to inscribe a right angle in a 
semicircle is not to speak geometrically, since all the 

126 Tannery, Géo. grecque, Pp. 145. 
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inscribed angles are right angles; on the contrary, 
to inscribe an equilateral triangle in a circle is really a 
problem, since it is possible to inscribe in it a triangle 
which is not equilateral.’’ 1 

The disagreement is deeper in appearance than in 
reality, and arises, as Proclus explains, from a difference 
of point of view. The distinction between ideal science 
and didactic science is itself sufficient to show that both 
Geminus and Carpus may be right, “‘ for if it is accord- 
ing to the order that Carpus gives the pre-eminence to 
problems, it is according to the degree of perfection 
that Geminus gives it to theorems.” 2 In as far as it 
is ideally conceived of, mathematical truth only contains 
theorems, but to the mind that conquers it by degrees 
it appears in the form of problems. However, whether 
it is a question of problems to solve or theorems to 
demonstrate, it is necessary to have recourse to methods 
of which the Greeks, starting from Plato, had carefully 

fixed the stages. By analysis they decomposed a 
complex whole into simpler propositions, already 
admitted or demonstrated. For example, to draw a 

tangent to two circles, they supposed the problem 
solved, and showed that in order to find this solution, 
it is necessary to start from the known construction of 
a tangent drawn to a circle through an external point. 
Synthesis, on the contrary, enables the complex 
geometrical relation, of which the demonstration is 
needed, to be reconstructed by means of primitive 
propositions. 

For the Greeks the typical question consists of seven 
parts : 

1. The frotasis, or enunciation indicating the data of 
the problem and what is required ; 

2. The ecthesis, or repetition of the enunciation in 
relation to a particular figure ; 

126 Tannery, Géo. grecque, p. 145. 
? Quoted according to 4 Boutroux, Idéal, p. 63. 
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3. The apagogee (anaywy),! which changes the ques- 
tion propounded into another more simple ; 

4. The solution, which shows the possibility of solv- 
ing this simpler question by means of the data of the 
enunciation in defining by division the conditions of 
possibility ; 

5. The construction, which completes the ecthesis by 
defining the various accessory lines which it is necessary 
to consider in order to make the demonstration ; 

6. The demonstration properly so called, which 
deduces from the construction the figure required ; 

7. The conclusion, which affirms that this figure 
satisfies the required conditions.? 

As M. Zeuthen remarks, ‘“‘ whilst the analysis con- 
tained in Nos. 3 and 4, i.e. in the transformation and 
the solution, is methodically important for finding the 
solution, it is no longer necessary when it is merely a 
question of expounding in an unassailable manner 
what has been found, which was always the chief aim 
of Greek writers. It is therefore very often omitted, 
so that the exposition consists only of the use of 
operations numbered 1, 2, 5, 6, 7; thus the form which 
we call synthetic is obtained.’’* By their very nature 
theorems assume the form of a synthetical rather than 
an analytical exposition. They are capable, however, 
of an antithetical demonstration, the procedure of 

which is analytical. One supposes that the proposed 
theorem be true or false, then one considers whether 
the consequences deduced from this supposition be 
apparently right ; according to the conclusion reached, 
the theorem will be judged true or false. One supposes, 
for example, that two triangles, having one side and 

iG. Friedlein, In primum Euclhidis Elementorum lbrum 
Procki Commentarii, Teubner, Leipzig, 1873, p. 212. 

2 4 Boutroux, Idéal, p. 55.—29 Zeuthen, Histoire des mathé- 

matiques, p. 80.—26 Tannery, Géo. grecque, p. 148. 
829 Zeuthen, Histoive des mathématiques, p. 83. 
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two angles adjacent to this side equal each to each, 
are equal. To affirm the contrary would be to admit 
that the two triangles cannot be exactly superposed, 
and that the angles supposed to be equal are not so in 
reality, which is not in agreement with the data of the 
question. 

If we now consider Greek geometry, having no 
longer regard to its particular methods, but to its 
spirit, there are other characteristics yet to be noted. 
The demonstrations are always instinctively based on 
logical and statical ideas ; they generally avoid making 
any appeal to considerations which, in spite of their 
evidence, arise from intuitive perception. It is thus 
that Euclid demonstrates the following fact which 
might appear however unquestionably evident: if 
from a given point a perpendicular and two oblique 
lines are let fall on a straight line, of those two oblique 
lines that which diverges most from the perpendicular 
will be the longer. 

As far as possible Euclid also avoids, if not the dis- 

placement, the turning over of a figure, although this 
operation, now considered correct, allows of a more 
rapid demonstration. For instance, it is enough to 
turn over an isosceles triangle in order to demonstrate 
that the angles opposite to the equal sides are them- 
selves equal. Euclid however prefers to decompose 
the isosceles triangle into two right-angled triangles, 
whose equality he then proves. It is the same when 
he wishes to demonstrate, pair by pair, the equality of 
the angles formed by a secant which cuts two parallel 
straight lines. The simplest method would be to 
displace one of the parallels until it coincides with the 
other. Euclid here again brings in two right-angled 
triangles, of which he establishes the equality. In this 
way the demonstration preserves a static character 
more in agreement with the exigencies of logic. This is 
so true that wherever displacement occurs in plane 
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geometry, it is equivalent to a construction. Thus to 
superpose a triangle B on another triangle A in such a 
way as to be able to compare them, comes to construct- 
ing the triangle B on the triangle A according to the 
conditions stated in the enunciation. 
We see that plane geometry avoids the direct use of 

the methods of displacement, especially of turning over, 
and the reason for this must be sought in the fear of 
giving a hold to the arguments of Zeno respecting 
motion and infinity. 

It was also for this same reason, we think, that the 
Greek philosophers avoided the geometrical infinity 
in the same way as they rejected the direct use 
of numerical infinity in their methods of integration. 
They possessed, however, since the works of Apollonius, 
the essential elements (points of involution, anharmonic 
ratio) for reaching, by generalization, to geometrical 
infinity. But on this question they remained faithful 
to the teaching of Aristotle, who considered real space, 
and therefore geometrical space, to be finite. Conse- 
quently, the conception of points, straight lines, and 
planes, removed to infinity, is not only obscure from 
a logical point of view, but contrary to experience. 
Therefore it would not be possible, even as a convenient 

symbolism, to appeal to geometrical infinity and make 
it the starting-point of new methods. For want of 
searching in this direction and from loyalty to its 
logical ideal, Greek geometry was obliged to resort to 
a complicated kind of demonstration, the application 
of which rendered difficult the linking of theorems in 
correct sequence. It was an event of outstanding 
importance when Desargues, in the seventeenth cen- 
tury, made a direct use of geometrical infinity. The 
simplifications wrought by this act were so great that 
they struck the contemporaries of the great geometer. 
Speaking of Desargues, the engraver Bosse says that 
the work which he has published on conic sections, one 
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proposition of which includes as consequences sixty of 
those of the four first books of Apollonius, has gained 
for him the esteem of savants.+ 

In conclusion, what characterized the spirit and 
methods of Greek geometry was an ideal of logical 
rationality which may be defined in the following 
terms : 

1. To postulate primary propositions (definitions, 
hypotheses) as logical and as few in number as possible. 

2. To construct by means of reasoned deduction 
the whole edifice of mathematics on the basis of these 
propositions. 

Logical rigour is thus safeguarded, but at the price 
of complications which, as we have just seen, do not 
allow the methods of invention and demonstration to 
be given all the generality of which they are capable. 

1Chasles, Apercu historique des méthodes, Gauthier- Villars, 
Haris, 1875, Pu Jo: 



CHAPTHK Et 

ASTRONOMY 

ROM its beginnings Greek Astronomy, like 
Geometry, sought to model itself after the 
type of a rational science; having to explain 

physical facts, it tried to do so by physical causes, 
that is to say causes of the same nature as these facts. 

To primitive peoples, celestial phenomena are divine, 
that is, they depend entirely on the more or less 
capricious will of divinities. Doubtless, as we have 
seen, the Egyptians and Chaldeans already possessed 
some amount of astronomical knowledge, but this 
knowledge consisted, after all, in ascertaining the 
periodicity of celestial phenomena, without giving any 
explanation of these. 

From the first, Greek astronomy launched out in 
another direction, as the works of the Ionian school 

show. These works appear incredibly daring if we 
compare them with the religious beliefs of the Chaldeans 
and Egyptians. 

Thales, for example, lays down as a principle that 
water is the unique element from which all things arise 
by the action of purely physical causes, for water can 
be solidified into ice, be changed into vapour, that is, 
air, etc. Having once laid down this principle, Thales 
deduces from it a cosmology which, in spite of its 
childish simplicity, remains physically rational. 

However it was only with difficulty that Greek 
astronomy succeeded in specifying its ideal and object. 
It passed through a series of stages which may be 

161 
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roughly indicated as follows: in the first phase 
astronomy is entirely confused with meteorology ; in 
the second, the physical and geometrical hypotheses 
which it needs are distinguished more or less clearly ; 
in the third and last phase an attempt is made to give 
a mathematical representation as exact as possible of 
the movement of the heavenly bodies. 

1. METEOROLOGICAL IDEAS 

As long as the earth and the sky were regarded as 
being situated on the confines of one another, celes- 
tial phenomena were assimilated to meteorological 
phenomena and an explanation of the former was 
sought in the latter. The meteorological ideas them- 
selves were very confused. Vapour was simply con- 
densed air. Furthermore up to the eighth century 
B.c. darkness was considered as a material thing, 
composed of vapour. Heraclitus, for instance, affirms 
that darkness is a concrete vapour, which, rising from 
the sea and the bottom of the valleys, is able by its 
aqueous nature to extinguish the sun. Plato likewise 
makes the Pythagorean Timaeus say that fog and 
darkness are condensed air (Timaeus, 58 D,2). Theair 
possesses different properties according as it is hot or 
cold: in the first case it is light and mobile; in the 
second it is heavy and stable. On the other hand, when 
it is compressed in the form of vapour, it is partially 
changed into invisible fire which suddenly bursts forth 
as lightning, when, for lack of compression, the cloud 
isrent. Fora long time the Greeks, like the Chaldeans 
and the Hebrews, regarded daylight as distinct from 
sunlight. Shadow even had a concrete reality of its 
own, it was not a function of light; it was only 
strengthened by its opposition to light. These ideas 
persisted until the time of Empedocles, when the 
reflection of light and the true nature of vapour, 
shadow, and darkness were discovered. 
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In agreement with the meteorological opinions which 
we have just called to mind, there were, concerning the 
nature and the movement of the heavenly bodies, the 
eclipses, the shape and position of the earth, very diverse 
hypotheses of which the following are the principal. 

First of all, to explain the constitution and the 
movements of the heavenly bodies, Thales and with him 
Heraclitus considered them as basins which move on the 
liquid vault of the heavens and in which the dry exha- 
lations arising from the earth are consumed. Anaxi- 
mander and probably with him Pythagoras likened the 
celestial bodies to the felloes of a wheel, which, formed 
by the compression of the air, encloses an invisible 
fire; owing to the compression, openings by which 
the fire escapes are produced on the periphery of the 
felloes, which revolve with a uniform movement.}! 
Anaximenes, on the contrary, declares that the celestial 
bodies are of an igneous nature and are supported by 
the air ‘‘ like thin leaves.”” 2. Xenophanes considered 

them to be fiery clouds, similar to St. Elmo’s fire, 
which move in a straight line from east to west.® 
Empedocles thought, as we have seen, that the sun was 
produced by the rays which proceed from the lighted 
hemisphere and which, after being reflected on the 
surface of the earth, are concentrated at one point of 
the crystalline vault. Anaxagoras appears to have 
been the first to describe the sun, the moon, etc., as 
fiery stones which are drawn round by the rotation of 
the ether. 

The explanation of eclipses arises quite naturally 
from these various ideas. In the cosmology of Thales 
and Heraclitus, the eclipses, according as they are 
partial or total, are caused by the inclination or 
turning over of the luminous face of the basins which 

18 Burnet, Aurore, pp. 68 and 124. 
2Tbid., p. 31. 
SR Dtde Pe 135. 
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are the stars. According to Anaximander, they result 
from the partial or total obstruction of the opening of 
the felloes. Anaximenes explains them by the inter- 
vention of earthy dark bodies which move around the 
celestial vault. Empedocles, however, knew the true 

theory of the solar eclipses, though it was Anaxagoras 
who clearly formulated it, as Hippolytus reports: 
‘“The moon is eclipsed by the earth which robs it of 
the light of the sun, and also sometimes by the bodies 
which are below it and pass in front of it. The sun is 
eclipsed at new moon, when the moon hides it from us.” 
(Diels, Vor. I, 301, 47.) 

As to the shape and position of the earth, the first 
Ionians generally considered this as a cylinder sup- 
ported by water or suspended in the air, or as a thin 
disc, or again as a dish with turned-up edges. 
Pythagoras seems to have been the first to affirm the 
sphericity of the earth, which was distinctly proclaimed 
by Parmenides.? 

Finally, it may be said that the conceptions of the 
comparative movements of the heavenly bodies are 
lacking in precision, and vary according to their authors. 
These all agree that the region of the fixed stars accom- 
plishes a revolution round the celestial pole in 24 hours; 
but they differ in their views regarding the sun, moon 
and planets. These heavenly bodies are sometimes re- 
garded as meteors which traverse the atmosphere by 
an independent motion, sometimes as bodies partially 
drawn by the movement of revolution of the starry 
heaven. 

2. THE PHYSICAL HYPOTHESES 

The Pythagorean school did not entirely abandon 
the meteorological studies of its predecessors, but it 
added to them the desire to comprehend the mechanism 

125 Tannery, Science helléne, p. 208. 
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of the celestial movements. In the doctrines professed 
by this school, it is very difficult to separate the ideas 
of the master from those of his disciples. 

Although Pythagoras affirmed that the earth is 
motionless,! it appears that he must be given the credit 
of recognizing that it is a sphere, it may be because 
he considered this figure perfect, or it may be that he 
had recognized it in the shape of the terrestrial shadow 
which causes the lunar eclipses. He was the first to 
distinguish, in the progression of the sun, of the moon 
and even of the planets, two movements which take 
place about distinct poles. One of these movements 
is diurnal, along the plane of the equator ; the other is 
annual, in an opposite direction to the first, along the 
plane of the ecliptic. This is all that can be reasonably 
attributed to Pythagoras. 

One of his disciples, Philolaus, a contemporary of 
Socrates, developed the conceptions of his master in 
the following manner. The spherical universe is sur- 
rounded by a fire which sustains it, and of which a 
part is also condensed at its centre. The central fire 
produces the diffused light of day and the outer fire 
feeds the stars. The space which separates them is 
divided into three concentric regions. The most distant 
is the Olympus, or the sphere of the fixed stars. Then 
comes the Cosmos, in which are found successively, as 

the central fire is approached, the planets, the sun, and 
the moon. The sun, moreover, is not self-luminous, 
it is a transparent mass like glass, which receives the 
illumination of the fire from above and sends it back 
to the earth. Lastly, the Uvanus forms the sublunar 
region in which “‘ are found the things subject to genera- 
tion, the prerogative of that which animates the trans- 
mutations.” (Aetius, Diels, Vor. I, 237, 23.) This 
radical distinction between the sublunar region and 
the space which extends from the moon to the confines 

133 Duhem, Systéme, I, p. 8. 



166 SCIENCE IN GRECO-ROMAN ANTIQUITY 

of the universe was revived by Aristotle and affirmed 
until the Renaissance. 

The bodies which exist above the moon are composed 
of pure fire or pure elements, which cannot be impaired 
or changed ; they are therefore eternal, and, being un- 
created, are imperishable. 

The sub-lunar bodies, on the contrary, are all com- 
plex ; they are subject to generation and destruction, 
since the mixtures of which they are formed are 
subject to all sorts of changes. 

The earth is in the Uranus as well as its opposite 
the counter-earth (Antichthon), which was postulated 
to satisfy the law of perfection which required that the 
number of the heavenly bodies in circular motion 
should reach the perfect figure ten. The existence of 
the counter-earth was also necessary to explain the 
greater frequency of eclipses of the moon than of the 
sun. 

The earth and the counter-earth turn around the 
central fire as if they were rigidly fixed to the extremi- 
ties of one diameter. This is why we cannot see either 
the central fire or the counter-earth from the side on 
which we live. The ten celestial bodies (sphere of the 
stars, five planets, sun, moon, earth and counter-earth) 
move around the central fire, the hearth of the universe, 
after the manner of a chorus on the stage ; moving at 
different speeds, they produce by their revolution a 
perfect musical harmony. The earth is not the only 
heavenly body inhabited. The moon is also inhabited, 
but the lunar beings are more beautiful and fifteen 
times as big as the terrestrial beings. (Aetius, Diels, 

V0r7,2237, 43.) 
Hicetas and Ecphantus, two disciples of Pythagoras 

later than Philolaus, abandoned the hypothesis of the 
counter-earth; they placed the central fire in the 
interior of the earth and the earth itself at the centre 
of the universe. Furthermore, to explain the move- 
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ment of the heaven and the heavenly bodies, which 
movement they considered as being apparent, they 
endowed the earth with a movement of rotation on 
itself. Their doctrine, preserved by Cicero amongst 
others, certainly guided Copernicus in his investiga- 
tions, for he twice quotes the passage from Cicero 
(Quaestiones Academicae priores, II, 39), in which 
Hicetas is erroneously called Nicetas. This passage 
is as follows: 

“ According to Theophrastus, Nicetas of Syracuse 
professed the opinion that the sun, moon and all the 
celestial bodies remained motionless, and that nothing 
moves in the world, except the earth, which, turning 
round its axis at a great speed, produces the same 
appearances as those observed when it was supposed 
that the earth was fixed and the heaven in motion. 
Some think that Plato, in the Timaeus, said the same 
thing in a somewhat more obscure manner.” } 

As M. Duhem remarks,? the little that we know of 
the systems elaborated by the Pythagoreans to explain 
the celestial movements is enough to awaken our 
astonishment and admiration. The fecundity and the 
ingenuity of the Hellenic mind are surprising : scarcely 
had it found itself at grips with the astronomical 
problem when it multiplied its attempts at solution, 
and attacked it in most diverse ways. The conceptions 
of the Pythagorean school had in fact an incalculable 
influence on astronomy, for they distinguished for the 
first time between movements which are real and move- 
ments which are only apparent; they bring into 
relief the fact that outside the data immediately 
furnished by the senses there must be sought a har- 
monious reason to explain them. 

Plato incorporates in his teaching the principal 
elements of the Pythagorean astronomy. He retains 

1Quoted after 13 Duhem, Systéme I, p. 22. 
2 1b18., Dei 27- 

12 
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the fundamental distinction between the diurnal 
motion and the annual retrogradation of the planets, 
sun and moon, movement and retrogradation which 
take place on two planes and about two different poles. 
The Timaeus shows us the Demiurge who, after having 
created a world-soul, cuts it in the shape of a X, 
then curves back the extremities of this X so as to 
obtain two circles. One of these circles represents the 
equator and the uniform changeless movement of the 
diurnal revolution; the other represents the ecliptic 
and the varied movements of the celestial bodies other 
than the stars. 

The two circles are found again in the movements of 
the mind, which sometimes seeks after the eternal, some- 

times, on the contrary, clings to the changing elements 
of reality. But the principal idea of the Pythagorean 
astronomy, which Plato kept, was the opposition 
between real and apparent movements. For this 
reason, he assigns to astronomy the following task: to 
account for these appearances, that is, to discover 
behind the sensible phenomena the geometrical reasons 
which explain and justify them. ‘ Plato, says Sim- 
plicius in his Commentaries (in Avistotelis libros de 
coelo commentarit, Bk. II, cap. xii, Karsten edit., p. 219, 
col. a), admits in principle that the celestial bodies 
move with a circular motion, uniform and constantly 
regular (that is, in the same direction) ; he propounds 
therefore this problem to mathematicians—What are 
the circular and perfectly regular movements which 
may properly be taken as hypotheses to account for 
the appearances of the wandering heavenly bodies ? ”’ 4 

The problem having been thus stated, it is necessary, 
starting from Plato, to distinguish in Greek astronomy 
two kinds of hypotheses which until that time had 
been more or less mingled: the physical hypotheses 
regarding the nature and constitution of the stars, and 

1Quoted from 13 Duhem, Systéme I, p. 103. 
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the mathematical hypotheses which attempt to account 
for their movements. The physical hypotheses, al- 
though in some degree supplemented by Aristotle, 
remained in antiquity and the Middle Ages practically 
the same as in the time of Plato and his immediate 
predecessors. At this epoch, as we have seen, the air 
and humidity were no longer confused ; darkness was 
considered as a shadow and no more as a material fact. 
It was also admitted that although the sun, planets 
and stars shine by themselves, the moon has a borrowed 
light. 

This being so, the physical hypotheses may be 
reduced to four: 

I. The universe forms a fimite and finished whole. 
To suppose it illimitable, is to contradict both reason 
and fact. Our reason cannot in fact conceive of some- 
thing which exists in reality and does not occupy a 
definite place. On the other hand, if the universe 
were infinite, its extremities would have to traverse 
infinite spaces in a finite period of twenty-four hours, 
which is actually impossible. 

2. Since the universe is finite, it has a spherical form 
and a centre, and it is the earth which must occupy 
this centre. If we consider the earth alone, we see 
that it is motionless. Besides, of all the elements 

known to us, it is the terrestrial element which is 
heaviest and consequently must occupy the centre of 
the universe. 

3. The universe as a whole is composed of two 
regions: one celestial, the other sublunar. The sub- 
lunar region comprises the bodies formed by the 
mixture of the four elements, water, air, earth and fire, 

and which are therefore subject to birth and death. 
The celestial region is occupied by the heavenly bodies, 
which, being formed of a fifth and unique element 
(quintessence), are, like this element, incorruptible. 

4. Physically there is but one possible movement, 
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regular and uniform, for a body which turns freely 
about another; it is the civculay movement. For, 
if the revolving body begins to approach or recede 
from the central body, it will end either by falling on 
it or by going away from it altogether. 

3. THE MATHEMATICAL HYPOTHESES 

The mathematical hypotheses were on the whole 
much more varied than the physical ones. In order 
to grasp their significance, it must be remembered 
that they do not pretend to explain the movements 
of the heavenly bodies in regard to one another by 
any physical cause such as Newton’s law of attraction, 
for instance.1 They only attempt to give a geometrical 
representation of these movements. This representa- 
tion may be imaginary like the mechanical means for 
going from the earth to the moon imagined by modern 
novelists. The novelist must doubtless take into 
account the known laws of physics and not contradict 
these : but nevertheless it matters little to him that 
the engineer has not the necessary funds for the con- 
struction of the cannon which will send a bullet to the 
moon. In the same way Greek astronomy was obliged 
to take into consideration the four physical facts 
mentioned above, but for the rest it was entirely free 
to invent whatever geometrical representation appeared 
to be most appropriate. Plato and his Pythagorean 

1“ We must, however, except a curious opinion reported 
by Plutarch (De facie in orbe lunae, Ch. VI) which seems to 
foreshadow the mechanics of Newton, and which may be 
summarized as follows: What keeps the moon from falling 
is its own movement and the rapidity of its rotation ; similarly, 
for a projectile put in a sling, the force which prevents it from 
falling comes from circular rotation. In fact, natural motion 
only carries along a given body if nothing else opposes it. 
The moon is not carried along by its weight, for this weight 
is repelled and destroyed by the force of its rotation.” Quoted 
from Doublet, Histoive de l’Astronomie, p. 119. 
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predecessors thought to account for the appearance of 
the wandering heavenly bodies by endowing them 
with a dual revolution, diurnal and non-diurnal, in an 
opposite direction to each other ; but this conception 
did not solve the problem. 

The planets situated on the same plane (the ecliptic) 
as the sun doubtless traverse the same region as the 
sun, namely, the constellations of the zodiac, but their 
progression is irregular and shows stationary points 
followed by a retrograde movement, then an advance, 
and so on. 

To account for this irregular motion, Eudoxus of 
Cnidus gave to each wandering heavenly body a 
mechanism of homocentric spheres touching and 
enclosing one another and having the earth as their 
centre. ‘‘ The heavenly body is situated in the thick- 
ness of the last of these spheres, the one which is within 
all the others, and its centre is on the equator of this 
sphere,” * 

The first sphere, that which is exterior to all the 
rest, turns with a uniform motion from east to west, 
in twenty-four hours round the axis of the earth shown 
by the Pole star. In this manner all the planets share 
in the diurnal rotation which moves the heavenly 
bodies. The second sphere, resting by means of its 
axis on the first sphere, is animated by the same uniform 
movement, but the speed and sense, as well as the 

direction, of its own movement are different. In 
fact, this second sphere turns uniformly from west to 
east around an axis which is normal to the ecliptic. 
The duration of this revolution is not the same for the 
various planets ; it is, for example according to Eudoxus, 
one year for Mercury, eleven years for Jupiter, etc. 

The third sphere, which is interior and contiguous 
to the second, is affected by the complex movement of 

1 The system of Eudoxus has been reconstituted by Schia- 
parelli and summarized by 13 Duhem, Systéme I, p. 114. 
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the latter and combines this with its own uniform 
movement. 

Things proceed in this manner down to the last 
sphere, which carries the planet on its equator, and as 
many spheres are required as there are particular 
movements of the planet to explain. 

For instance, if the plane of the moon were the same 
as that of the ecliptic, there would be as many eclipses 
of the sun and moon as there are new and full moons, 
and two spheres would be sufficient to account for the 
observed facts. But the plane of the moon being 
inclined to that of the ecliptic, the latter is cut by the 
lunar orbit at two points or nodes, at which points 
alone eclipses can take place. As these nodes are dis- 
placed by a uniform and regular movement, it requires 
a special sphere to explain this displacement. So that 
three spheres in all are necessary to explain the move- 
ment of the moon in the heaven. 

The problem is more complicated where the planets 
are concerned, since here there are stationary points 
and retrogradations followed by new progressions. 
Thus for each planet Eudoxus had recourse to four 
spheres : the first is connected with the diurnal revolu- 
tion, the second with the zodiacal revolution, the third 
and fourth with the irregular movements. 

There would be in all 27 spheres (20 for the planets, 
three for the sun, three for the moon, and one for the 
stars). 

Aristotle adopted the system of Eudoxus and sought 
to perfect it, partly by his own ideas and partly by 
those of Calippus. In the system of Eudoxus the 
movement of each planet forms an independent whole. 
Aristotle imagined compensating spheres which are 
intercalated in the spaces between the various 
mechanisms of the heavenly bodies. All the move- 
ments of the planets then become one with the single 
movement which animates the starry sphere. Aristotle 
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also affirmed the materiality of the spheres by consider- 
ing them to be composed of ether. This materialization 
was generally abandoned later on, until the time when 
the idea was revived by the Arabs. 

The system of homocentric spheres, perfected by 
Calippus and Aristotle a hundred years before, sur- 
vived until towards the end of the third century B.c. 
It clashed, however, with weighty arguments based on 
the noticeable variations of brightness shown by the 
planets, especially Mars and Venus. These variations 
of brightness indicate that the distances of the planets 
from the observer change in a manner which is incom- 
patible with a system of spheres concentric to the 
earth, in which the planets are always equally distant 
from the earth! Further, the theory of Eudoxus 
does not explain why Mercury and Venus are the only 
planets which always remain in the neighbourhood of 
the sun. 

To surmount these difficulties, a disciple of Plato, 

namely Heraclides of Pontus, had recourse to two 
hypotheses, of which one, which is quite original, 
admits a partial heliocentrism. Like the Pythagorean 
Ecphantus he first of all affirmed that the earth is at 
the centre of an infinite universe and that it turns 
on its axis in twenty-four hours, which explains the 
apparent revolution of the starry heavens. This 
being so, he supposed that Venus and Mercury revolve 
round the sun, whilst the latter moves round the earth 

as do the other planets. 
Aristarchus of Samos, the date of whose scientific 

work is about 280 B.c., went farther still in the same 
direction. He conceived a heliocentric system, the 
essential ideas of which were reproduced by Copernicus 
in the sixteenth century, and which may be described 
as follows: the motionless sun is situated at the centre 
of the universe which is bounded by the immobile 

12 Bigourdan, Astvonomie, p. 254. 
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sphere of the fixed stars. The earth is animated by a 
dual movement: the diurnal movement of rotation on 
its axis, and the annual movement of revolution round 
the sun. The planets also revolve round the sun. 
According to Aristarchus it must also be supposed 
that the sphere of the stars is very far away, otherwise 
the existence of parallaxes would be ascertained, 
which, in his opinion, is not the case. 

This conception, as ingenious as audacious, had no 
renown in antiquity. The reasons for this failure are 
diverse, religious as well as scientific. To liken the 
earth to the planets, by making it, like them, revolve 
round the sun, was to be guilty of impiety, for it 
abolished the distinction between the corruptible 
matter of the earth and the incorruptible essence of 
the stars. The hypothesis of Aristarchus was also 
contradictory to the then known laws of physics, since 
the earth, being composed of the heaviest elements, must 
necessarily occupy the centre of the universe. Lastly, 
this hypothesis by its use of circular movements alone, 
did not account for the inequality of the seasons. For 
these reasons we can well understand why it was not 
followed up. ‘ 

The solution of the difficulties which the system of 
Eudoxus could not overcome was sought in another 
direction. Hipparchus and Ptolemy, using the works 
of Apollonius, had recourse to a combination of 
eccentrics and epicycles. An eccentric movement 
is that described by a circle turning round a point 
within it other than its centre. A system of epicycles 
is formed by an arrangement of successive circles 
such that the centre of one is at a point on the circum- 
ference of the other. It is therefore necessary first to 
observe the stationary points, the retrogradations and 
the variable brightness of a planet, and notice the 
differences according to the region of the heaven it 
traverses, and then find the combination of epicycles 
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and eccentrics which will account for the facts 
observed. 

Hipparchus acquitted himself of this task in a 
masterly fashion. He not only succeeded in sur- 
mounting the difficulties which had arrested his pre- 
decessors, but he discovered new facts such as the 
precession of the equinoxes and gave a geometrical 
explanation of them.} 

Inspired by the conceptions of Hipparchus, Ptolemy 
summarized and completed the astronomical know- 
ledge of antiquity in the form in which it was be- 
queathed to the Middle Ages. At this period, two 
tendencies manifested themselves: one amongst the 
Arabs, the other amongst scholastic thinkers. 

The Arabs could not be satisfied with the abstract 
conceptions of Greek astronomers; they sought un- 
dauntedly to materialize the geometrical fictions, and 
to give them a physical basis. ‘In reality,” said 
Averroés, ‘‘ the astronomy of our time does not exist ; 
it is suitable for calculation, but does not agree with 

what really is.”’* To fill this gap Al-Bitrogi imagined 
nine solid and transparent spheres and attempted to 
explain all the celestial phenomena by their arrange- 
ment.’ This realistic conception found favour in the 
Middle Ages. As Paradise was situated at the outer- 
most part of the heavens, in order to reach it it was 

necessary to cross the solid spheres by certain fixed 

1 He ignored the physical cause of this phenomenon, namely 
the equatorial bulging of the earth. In consequence of this 
bulging, the earth in its movement of rotation moves like an 
oscillating spinning-top, therefore the plane of the equator 
and the plane of the ecliptic do not intersect at the same point 
at the end of an annual revolution. The result is that after 
each year the sun returns to the equinox slightly sooner than 
it otherwise would do with respect to a star taken as a guiding 
mark of reference. 

213 Duhem, Systéme II, p. 139. 
s[bid., Pp. 140. 
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paths. The journey, under these conditions, was not 
easy, as is shown by the fabliau “ of the villein who 
gained Paradise by pleading ”’: 

A son chevet par grand hasard 
Il ne se trouva pas un diable, pas un ange 
Qui pit le véclamer au moment du départ. 
Embarvassé le pauvre hére 
Partit sans guide et ne sachant que faire. 
Par bonheur il vencontre et suit lange Michel 
Qui menait lors un bienheureux au ciel. 

The scholastic philosophers, particularly Thomas 
Aquinas, preserved the attitude adopted by the Greek 
astronomers, whose hypotheses they discussed very 
freely. “‘It might be possible,’ declared Thomas 
Aquinas, “‘ to explain the apparent movements of the 
stars by some other method not yet conceived by 
man.” } 
We know how Copernicus during the Renaissance 

brought into fame the heliocentric system proposed 
by Aristarchus, while at the same time, like the latter, 

he kept the conception ofa finite universe. Under these | 
conditions his hypothesis could not have a revolutionary 
character. Being regarded as a mathematical specu- 
lation, it was studied from this point of view and was 
found wanting, even by thinkers such as Tycho Brahe. 
It contradicted the physics of Aristotle without supply- 
ing the proofs required; moreover it scarcely simpli- 
fied the calculations at all, since the movement of the 

planet Venus, for instance, still required a machinery 
of five epicycles.? 

In order to disturb beneficially the minds of men and 
to find credence, the hypothesis of Copernicus needed 
to be completed : 

1. By the considerations of Giordano Bruno on the 

113 Duhem, Systéme III, p. 354. 
224 Sageret, Systéme, p. 194. 
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relative movements and the infinite magnitude of the 
universe ; 

2. By the hypothesis of Kepler regarding the 
elliptic movement of the planets, a brilliant hypothesis, 
since it led to a very great simplification in the calcula- 
tions, without being contrary to the appearances ; 

3. By the researches of Galileo on weight, and by his 
observations on sun-spots ; for the results thus obtained 
finally demolished the physical theories of Aristotle 
concerning loci and the opposition between the celestial 
and sublunar regions. 

It was therefore owing to the works of Kepler and 
Galileo that the mathematical and physical hypotheses 
could harmoniously blend and that astronomy could 
enter upon new paths. 



CHAPTER III 

MECHANICS AND PHYSICS 

O build up, as did the Greeks, a scientific 
astronomy which was altogether different from 
astrology, is a task which presents very great 

difficulties ; but when it is a question of explaining 
physical and mechanical phenomena, these difficulties 
become almost insurmountable. In this domain we 
come into collision with such a variety of aspects 
that it seems impossible to derive them all from a 
small number of primary notions. 
A badly-hewn tree trunk is in equilibrium on a 

beam. We feel instinctively that the equal division 
of the weight round the point of support is the cause 
of this phenomenon. But how can it be explained 
accurately ? And is the equality of weights the sole 
cause? A bag of sand placed on a bar of iron can 
remain in equilibrium even if the sand is not equally 
distributed on the two sides of the bar. 
A piece of deal and a piece of cork of the same size 

are thrown into the water. The latter sinks less than 
the former. Is it possible to explain this fact by means 
of the same theories which make comprehensible the 
state of equilibrium of the beam or of the bag of 
sand ? 

Again, it is quite another matter if we pass from the 
study of bodies at rest or in equilibrium to the study 
of bodies in motion. We know that a stone falling 
freely from the height of a tower accelerates its fall. 
How is this increase of speed to be accurately measured ? 

178 
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We know also that a pebble thrown almost vertically 
by means of a sling stops at the highest point of its 
path and then falls back again. But what path has 
this pebble travelled and what has been its speed at 
each instant ? Can we hope to deduce the explanation 
of such diverse phenomena from a few conceptions 
and a few principles ? 

It must be stated at the outset that the Greeks did 
not succeed in realizing this ideal or at least they 
could only do so imperfectly. It is the opinion of 
many thinkers that the Greek mind was too logical 
to be able to create sciences exclusively based on 
experience and experimentation. The reproach stated 
in these terms is certainly unjust. The Greeks were 
able not only to observe but to control phenomena 
as far as they were in a position to do so with the 
instruments at their disposal. G. Milhaud has clearly 
brought out this point, which proves the truth of the 
technical inventions of the Greeks and of the physical 
concepts which guided them. 

1. TECHNICAL INVENTIONS AND PHYSICAL 
CONCEPTS 

We already find in Homeric times an advanced 
technique, especially in the construction of swing- 
doors and their fastenings (Odyssey, xxi, 42)2 A 
little later, at the time of Thales, the engineer Eupalinus 
constructed in the island of Samos a tunnel which 
passed under the hill of Kastro. This was dug out 
from the two sides of the hill at the same time and 
the meeting-point of the miners was almost exact, 
which implies quite advanced methods of triangulation. 
In Magna Grecia in the south of Italy, Archytas, the 
disciple of Pythagoras, became celebrated for his 
mechanical inventions and discovered the use of the 

121 Milhaud, Etudes, p. 257. 
210 Diels, Antike, p. 34. 
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pulley (Aulus Gellius, X, 12). However, it was 
especially engines of war which appeared at the court 
of Dionysius the Elder towards the year 400 B.c., to 
be developed a century and a half later by the genius 
of Archimedes. 

Besides powerful cross-bows and formidable catapults 
stretched by means of a windlass, the Greeks had even 
conceived the idea of the machine-gun: an ingenious 
mechanism made balls of metal slide automatically in 
the groove of a cross-bow each time it was drawn.? 

The works of Hero show us also that the Greeks 
already knew how to utilize currents of hot air, and 

compressed air, and that they were on the way to 
discover the motive power of steam, as is shown by 
the zolipile. This apparatus is composed of a hollow 
sphere pivoted horizontally, which is supplied with 
steam from a boiler through one of the pipes serving 
as a pivot. This steam escapes from the sphere in 
Opposite directions by two pipes situated at the 
opposite ends of a diameter perpendicular to the axis 
of rotation. By this arrangement the escape of the 
steam causes the sphere to revolve with increasing 
rapidity (Hero, I Puewmatica, p. 230). In these works ~ 
there is a description of a lift and force pump for use 
in case of fire (Hero, I Pneumatica, p. 133), and also 
the description of a hodometer similar in all points 
to our taximeter. A small pin is fixed to the hub of 
the carriage wheel, at each turn it moves a horizontal 
wheel with spaced teeth. An ingenious system of 
toothed wheels and endless screws transmits the move- 
ment and turns the hands of the meters which mark 
units of different magnitudes (Hero, III, Rationes 
dimetiendi, p. 292). 

The construction of the automata employed in the 
temples and theatres likewise reveals an intelligent use 
of the physical forces then known. A mechanism 

1r0 Diels, Antihe, p. 93. 
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was cleverly hidden underground just beneath the 
altars and communicating with them. Currents of 
hot and cold air, or streams of hot and cold water, 
or sometimes compressed air, could be used at will. 
All that was necessary was to light the fire on the 
altar. This fire heated the air and the water which 
worked the subterranean mechanism. This in turn 
acted on the statues, doves, etc., which the people 
then beheld moving mysteriously. The gods and 
goddesses raised their arms to bless the crowd and shed 
tears or poured out libations. Or again a dove, lifted 
by the hot air, rose by itself and fell to the ground 
(Hero, I, Pueumatica, p. 338 et seg.). It is needless 
to dwell on this point ; the interest to us of these con- 
structions is the degree of physical and mechanical 
knowledge which they imply. 

In this respect the forces recognized by the Ancients 
in the realm of physics were fire, air and gravitation, 
and also magnetic force. 

Plato spoke of the stone which Euripides called 
Magnetic, and which was generally called the stone 
of Hercules, which not only attracted iron rings but 
imparted to them its own virtue (Jon, 533 D). He 
attributed this attraction to the following phenomenon : 
a fluid exudes from the pores of the magnet or of the 
amber rubbed, and as a vacuum cannot exist in 
nature, the air rushes into the pores and its movement 
draws objects towards the magnet or electrified body. 

As regards the air, the Ancients knew that it tended 
to rise or descend according as it is heated or cooled, 
and that, when compressed, it escapes with violence. 
They also knew that if the air be sucked up from a 
tube half plunged in water, the water rises in the tube, 
and they explained the fact as follows: bodies are 
superposed in order of density, at the bottom the 
solids and liquids, above them the air, then the fire ; 
they always tend to follow one another in this order 
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without leaving any space between. Moreover the 
force of attraction is not at all the same between all 
these elements. It is little felt between a liquid and 
a solid, but it is felt much more between a liquid and 
the air. This is why the air sucked up out of a tube 
half plunged in water attracts the water strongly and 
counterbalances its weight. There is equilibrium when 
the weight of the column of water raised is equal to 
the force of the attraction of the air. 

The Ancients also admitted that sound is propagated 
in the air by spherical waves (Vitruvius, de architect., 
Bk. V), and that it can be sent back by an obstacle 

and produce an echo.} 
They admitted as well that light is propagated in 

a straight line, and that it is reflected on a polished 
surface at an angle equal to the angle of incidence. 
This law seems to have been known by Plato, judging 
by certain passages in the Timaeus (45 B and parti- 
cularly 46 B); it was clearly enunciated by Euclid, 
who demonstrated its principal consequences (Euclid, 
VII, Optica). Refraction was also studied, chiefly by 
Ptolemy.? 

The property possessed by concave mirrors of giving 
an enlarged image of an object was certainly utilized. 
The Ancients were also acquainted with magnifying 
lenses, although they did not know how to combine 
them for the construction of telescopes or binoculars 
or even eye-glasses. In the Clouds of Aristophanes 
(Act II, Scene 1) Strepsiades undertakes to efface by 
means of a lens the characters engraved on a tablet 
of wax: “‘ When the registrar has written his summons 
against me, I shall take the glass and standing thus 
in the sun, I shall make his writing melt.’”’ Seneca, 

1A. de Rochas, La Science des philosophes et l'art des thau- 
maturges dans ’antiquité, Dorbon Ainé, Paris, pp. 35 and 39. 

2 On the beginnings of mathematical physics, see 17 Loria, 
Scienze esatte, p. 557. 
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in his Questiones Naturales (Bk. I, Ch. vi., 5), says 
that small letters looked at through a glass ball full 
of water appear magnified. 

In the realm of mechanics the Ancients knew that 
a movement can be transmitted by means of toothed 
wheels and endless screws, and that it is possible to 
produce great effects with a small force, by allowing 
it time and by using a system of pulleys in sufficient 
number ; they also knew that water is incompressible 
and that this property can be utilized. 

Thus the technique of the Greeks was highly de- 
veloped, and was well on the way towards the dis- 
coveries which came to light during and after the 
Renaissance. If its efforts failed to obtain greater 
results, it was probably because the cheapness of slave 
labour rendered the construction of machines unneces- 
sary.1 Leaving aside this important question, it 
remains to be seen if and how the technical results 
obtained were interpreted from a theoretical point of 
view. With the exception of some passages from Plato, 
it was Aristotle who first attempted to formulate in 
order the general laws of physics and mechanics. 

2. ARISTOTELIAN DYNAMICS? 

Strictly speaking, Aristotle does not distinguish, as 
do modern scientists, between statics and dynamics ; 
he does not separate the theory of equilibrium from 

1E. Meyerson, Bulletin de la Société frangaise de Philosophie, 
_ Feb.—March, 1914, p. 103. 

2On the conceptions anterior to Aristotle, see Evolution- 
nisme et platonisme, by R. Berthelot, p. 139, the chapter 
entitled: L’idée de physique mathématique et l’idée de phy- 
sique évolutionniste chez les philosophes grecs entre Pythagore 
et Platon. 

3 For the general characters of Aristotelian physics, consult 
A. Mansion, Intvoduction a la physique aristotélicienne, Louvain, 
1913; and H. Carteron, La notion de force dans le systéme 
@ Aristote, 1924. 

13 
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the theory of motion ; he does not assign to the former 
its own principles quite independent of the latter ; 
he deals generally with the movements which can take 
place in a mechanism ; when no movement takes place 
the mechanism remains in equilibrium.t It must not 
be forgotten, moreover, that, for Aristotle, mechanics 
as a whole rested mainly on philosophical doctrines 
regarding the nature of movement and of natural 
position, the distinction between celestial and sublunar 
bodies, the opposition of natural and “ violent ’’ move- 
ments, etc. 

The idea of motion had primarily a much wider 
meaning than that which we give it.2) As a matter 
of fact, by motion Aristotle understood : 

1. A substantial change, which, for a given body, 
can take place in two opposite senses: the passage 
from form to formlessness which causes corruption, 
or, inversely, a passage from formlessness to form 
which gives rise to a birth. 

2. A quantitative change, owing to which a body 
is diminished or increased in volume. 

3. A qualitative change which causes in a body a 
transformation of its properties. 

4. A local movement which brings about the dis- 
placement of a body from one position to another. 

Of these four species of motion, the qualitative 
change presents a special character because it cannot 
be reduced to a mechanism or to a simple study of 
spatial ratios. A substance which changes in quality 
does so, not by a displacement of its molecules, but 
by an internal variation of its nature. The changes 
in quantity and substance, on the contrary, imply a 
local movement. This latter is therefore the most 
important in mechanics. Besides, it concerns the in- 
corruptible celestial bodies as well as the terrestrial 

111 Duhem, Ovigines, I, p. 5. 
713 Duhem, Systéme, I, p. 161. 
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bodies which are subject to the phenomena of birth 
and death. 

This being so, the local movement can assume two 
forms, the one natural, the other violent. 

The natural movement arises from the fact that 
for each body there is a place in which it exists in 
perfect equilibrium and towards which it naturally 
tends. This natural movement is necessarily simple 
like each of the simple substances affected by it. 

Only two kinds of simple movements exist, the move- 
ment of rotation, which Aristotle calls the circular, 
and the movement of translation, which he called the 
rectilinear 1 (Phys. 261 b). The circular movement is 
that which belongs by its nature to celestial bodies, 
for it is, like them, perfect. The rectilinear movement, 
on the contrary, is the movement of bodies situated 
in the sublunar regions, which are subject to generation 
and corruption. 

The simple movements of translation are of two 
kinds, some are directed towards the centre of the 
universe, others follow directions issuing from this 
point; the rectilinear centripetal movement (down- 
ward movement) naturally affects the heavy or weighty 
bodies whose position of equilibrium is the centre of 
the universe; the rectilinear centrifugal movement 
(upward movement) belongs to the light bodies which 
are situated in the concavity of the lunar orbit. Of 
the four elements which exist in the sublunar region, 
two are heavy, namely earth and water, and two 

are light, air and fire. 
Thus heaviness and lightness impart rectilinear 

movements to the bodies possessing these qualities ; 
but these movements cease as soon as the bodies have 
reached their position of equilibrium, that is to say 
the region of space in which they are naturally in 
equilibrium. So this position is not only a reality 

1143 Duhem, Systéme, I, p. 205. 
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but it possesses a certain power (Phys., 208 b, Io). 
This fact explains why the fall of heavy bodies is 
accelerated; the force of the weight increases in 
proportion as the body approaches its position of 
equilibrium.? 

The movements enumerated above, rectilinear down- 

wards for heavy bodies, rectilinear upwards for light 
bodies, circular for celestial bodies, are, as natural 
movements, in opposition to violent movements, which 
result from an external constraint and which are not 
directed towards the position of equilibrium of a body ; 
such, for instance, as the throwing of a projectile and 
the towing of a vessel. 

Further, whether the movement be natural or 
violent, it can only be either rectilinear or circular 
or composed of both, “ for all that which is in motion 
is moved either circularly or rectilinearly or both”’ 
(Phys., 261 b, 25). 

In postulating this principle Aristotle foresees one 
of the most fruitful theorems of modern kinematics 
which may be formulated thus: in its most general 
form, an infinitely small movement of a solid body 
is composed of an infinitely small rotation around a 
certain axis and of an infinitely small translation parallel 
to this axis.2, However, by applying this principle 
without any consideration of the infinitesimal, the 
Aristotelian dynamics was bound to lead to manifest 
errors. Consider, for example, a stone which, thrown 
into the air by means of a sling, falls back to the 
ground. To the disciples of Aristotle, the trajectory 
described by the stone is not a parabola, but it is 
composed of two straight lines which are joined by 
a circular arc. 

Having once established the distinctions between 

116 Jouguet, Lectures de mécanique, I, p. 3. 
*13 Duhem, Systéme, I, p. 171.—24 Sageret, Systeme, 

pe zie 
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celestial and terrestrial (light and heavy) bodies, and 
between natural and violent movements and their 
kinds, Aristotle defined the conditions and laws of all 
motion. 

In his eyes any body which is moved is necessarily 
subjected to two influences, a force and a resistance ; 
without the force it would not be able to move, but 
without the resistance, its movement would be accom- 
plished in an instant, and it would immediately reach 
the point to which it is impelled by the force; the 
velocity with which a body moves depends therefore 
both on the magnitude of the force and the magnitude — 
of the resistance.1 

This being so, if bodies of different weights, balls, 
for instance, of the same material and of various sizes, 
are placed on a plane horizontal surface, and if each 
of them is pushed at the same time with the same force, 
the lighter balls will roll more quickly and further than 
the heavy ones. From this, and other analogous facts, 
Aristotle deduces the following law which he considers 
the basis of mechanics. 

The force F which moves a body is equal to the 
resistance R which acts on this body, multiplied by 
the velocity V imparted to it by the force 

Pres RY. 

This law of mechanics excludes the possibility of empty 
space in nature, for if empty space existed anywhere, 
bodies would not be subject to any resistance when 
passing through it, and the ratio F/R which expresses 
the velocity would lose all numerical significance 
(Phys., 216 b). Thus, the existence of empty space 
is far from being that which rendered movement pos- 
sible, as the atomists pretended; on the contrary it 
is inconceivable that a body may move in empty 
space with a local movement.’ 

113 Duhem, Systéme, I, p. 192. Abid. Deal Ofc 
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Further, according as the movement is natural or 
violent, the resistance and the force manifest themselves 
differently. In the natural movement, the force is 
constituted by the quality of heaviness or lightness 
which impels a body towards its position of equilibrium 
and which acts inexhaustibly until this point is reached 
by the body. As to the resistance, it is simply that 
offered by the medium traversed, for instance the air 
in the fall of a heavy body. 

Observation shows us, besides, that the natural 
movement, in as far as it is rectilinear, is accelerated 
(Simplicius in Aristotelis. Diels, Bk. V, ch. vi, p. 916). 
When a streamlet of water falls from a height, from 

a gutter, for example, it appears continuous near its 
origin, but soon the acceleration of the fall detaches 
the drops of water from one another and they fall to 
the ground separately. 
When a stone falls from a height, it strikes an 

obstacle more violently if it is stopped towards the 
end of its fall than at the middle or beginning; this 
more violent impact is the sign of a greater velocity. 
Moreover, the theory confirms the observation. The 
rectilinear movement cannot go on for ever, it has a 
beginning and an end. Hence, starting from rest at 
a determinate moment of the duration, a moving body 
only passes from a zero velocity to a given velocity 
by means of an acceleration, and this acceleration 
continues for the same reasons as it began. It only 
ends when the moving body has reached its goal, its 
position of equilibrium? 

In violent movements such as the traction of a 
cart and the towing of a vessel, resistance is represented 

by the weight of the object to be moved, and force by 
the motive power continuously acting on this object. 
The movement of a projectile in the air is a special 

113 Duhem, Systeme, I, p. 388. 
424 Sageret, Systéme, p. 214. 
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case. Here, it is the air which plays the part of 
motive power. When displaced by the projectile 
coming out of the catapult or sling, the air flows 
back behind the projectile and pushes it forward. 
Whilst the rectilinear natural movement is accelerated, 
the violent movement is of necessity retarded (Phys., 
230 b, 25). 
From the mechanical point of view, the interest of 

Aristotle’s teaching lies in the law of proportions which 
he establishes, as we have seen, between the velocity 

V, the force F and the resistance R. The same force 
can move successively a heavy body and a light body ; 
but it will move the heavy body slowly and the light 
body quickly; thus the velocities of the movements 
imparted to these bodies will be inversely proportional 
to their weights. “‘ The velocity of the lighter body 
will be to the velocity of the heavier body as the 
weight of the heavier body is to the weight of the lighter 
body ”’ (De Coelo, 301 b). 

This law appears to be a faithful translation of com- 
mon observation. At first sight, it even seems to 
apply to the free fall of bodies in space. In this case 
the motive force is the weight, the resistance is the air. 
As a matter of fact, a light body like a feather falls 
more slowly than a heavy body like a piece of lead. 
If, however, we take two bodies of the same shape 
but weighing respectively r lb. and 2 lbs., we ought 
to have, since the resistance of the air is the same, 

t lb. = RV and 2 lbs.= R2V. 

The body weighing 2 Ibs. should fall twice as quickly 
as the one of 1 Ib., which is contradicted by experience. 

Thus the law postulated by Aristotle, which persisted 
until the Renaissance, is manifestly false. The resis- 
tance of the air does not play the part attributed to 
it by the Stagirite, and bodies fall with equal speed 
in empty space as had been supposed by the Atomistic 
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philosophers and with them Lucretius (II, 235): 
‘Consequently the atoms, in spite of the inequality 
of their masses, must move with equal velocity in 
empty space.” 

Again let us take a body subject to a force which 
remains the same and to a resistance which continuously 
increases until it becomes equal to the force, for ex- 
ample, when a stake is driven into the sand. Ex- 
perience teaches us that the velocity becomes nil at 
a given moment, but, according to the law of Aristotle, 
that is impossible, since we have the constant : 

F 

ie R 

Aristotle saw this difficulty, but in order to remove 
it he simply laid down the law that a small force 
cannot move a large body. ‘‘ Because a whole force 
moves a body along a certain distance, it does not 
result that half this force moves this body along any 
distance during any time. A single man would in 
that case be’ able to move the ship which all the 
haulers pull, if, the force of the haulers being divided 
by a certain number, the distance traversed were also 
divided by the same number.”’! Aristotle could not 
explain by his theory why it is easier to move with 
a given force a carriage having large wheels than one 
having small wheels. His mistake lay in considering 
as simple and elementary, facts which are really very 
complex. 

From the formula he had stated, F = R x V, Aris- 
totle drew the conclusion that the properties of the 
lever and the balance are related to the study of the 
velocities with which circular arcs are described. Two 
forces are equivalent if by moving unequal weights 
with unequal velocities they give the same value to 
the product of the weight by the velocity. 

1 Phys. 250 a, 10, quoted from 13 Duhem, Systeme, I, p. 194. 

” 
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“Tf we take a rectilinear lever divided by a fulcrum 
into two unequal arms to the ends of which two 
unequal masses hang; when the lever turns round its 
fulcrum, the two weights will move with different 
velocities, the one which is farthest from the fulcrum 
will describe in a given time a greater arc than the one 
which is nearest to it; the velocities with which the 
two weights move have the same ratio to each other 
as the lengths of the arms of the lever. 

When, therefore, we wish to compare the forces of 

(ae — cee ee ees oe oes ee 

Fic. 31. 

the two weights, we must find, for each of them, the 
product of the weight by the length of the arm of the 
lever; that one which corresponds to the greater pro- 
duct will outweigh the other; and if the two products 
are equal, the two weights will remain in equilibrium.” 1 
By an intuition of genius, Aristotle extended to 

other mechanisms his theory of the lever; he shows 
that the various operations of these mechanisms can 
be explained merely by considering the velocities with 
which certain circular arcs are described; hence he 

111 Duhem, Ovigines, I, p. 7. 
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foreshadows the principle of virtual velocities. ‘‘ For,” 
said he, ‘‘ the properties of the balance are reduced to 
those of the circle ; the properties of the lever to those 
of the balance; and the greater part of the other 
peculiarities of mechanical movements are reduced to 
the properties of the lever’’ (Questiones mechanice, 
848 a, II). 

Aristotle, however, was not able to deduce from the 
principle which he discovered all the rigorous conse- 
quences which arise from it. He applies it to problems 
which are too complex for the means by which he 
attempts to solve them. Already as regards the lever 
he had been confronted with the following difficulty : 
“the line described in a movement of the lever through 
the point of application of the force of resistance is 
a circumference of a circle; it does not coincide with 
the vertical line along which this force or resistance 
acts.”” 1 Aristotle perceived the problem, but he did 
not succeed in solving it. He contented himself with 
supposing that a balance is more accurate the longer 
its arms are, for then the circular arc described ap- 
proximates more nearly to a vertical line.? 

3. ARCHIMEDES AND STATICS 

The method adopted by Archimedes is very different 
from that of Aristotle. Archimedes limited the domain 
of theoretical mechanics to the study of problems of 
equilibrium, and in this manner he succeeded in estab- 
lishing the foundations of statics and hydrostatics. 
He did not dream of seeking his fundamental hypo- 
theses in kinematics, for the laws which govern the 
displacement of bodies in space do not seem to be 
reducible to the intelligible and clear conceptions of 
reason. On the other hand, the phenomena of equili- 

‘ brium can be interpreted by means of very simple rules, 

141 Duhem, Orvigines, I, p. 9. 

716 Jouguet, Lectures de mécanique, I, p. 35. 
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by a method similar in all points to that adopted by 
Euclid in his Elements. 

This being so, Archimedes only required that the 
two following propositions should be granted : 

1. Two equal weights applied at equal distances 
from the fulcrum are in equilibrium. 

2. Two equal weights applied at unequal distances 
(from the fulcrum) are not in equilibrium and the more 
distant weight descends. 

These and similar postulates were considered by 
Archimedes to be self-evident and independent of all 
experience. If a rod supposed to have no weight 
rests freely at its middle point on a fulcrum, and if 

Fie. 82. 

two equal weights are suspended from its extremities, 
it would appear a priori that the whole system is in 
equilibrium, for as the system is symmetrical there 
seems no reason why a movement should take place 
in one direction more than in another. It seems 
therefore evident, by virtue of the law of adequate 
reason, that the hypothesis is independent of all 
experience. 
When this hypothesis is admitted, the law of 

equilibrium is easily established in the case of a lever, 
namely #L = Pl, the relation in which the greater force 
P is exerted at the shorter arm / of the lever (Fig. 32). 

1Mach, La Mécanique, Hermann, Paris, 1904, p. 18. 
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To demonstrate this relation it is sufficient to replace, 
in the example given, the weight of 4 lbs. by an arrange- 
ment of two weights of 2 lbs. each, then there will be 
symmetry round the fulcrum and consequently equi- 
librium (Fig. 33). 

After having established the law of the lever, 
Archimedes used it in the investigation of the centre 
of gravity of various surfaces such as triangles, trapez- 
iums, and segments of a parabola. He demonstrated, 
for instance, that the centre of gravity of a triangle is 
the point of intersection of the medians. In fact, if 

FIG. 33 

a triangle be placed on the blade of a knife in such a 
manner that the latter coincides in each position with 
one of the medians, the triangle is in equilibrium. 
Consequently, it will also be in equilibrium if it be 
suspended by the point of intersection of the medians. 
By a similar method, but making use of new hypo- 

theses, Archimedes demonstrates in a masterly fashion 
a series of propositions in hydrostatics, which are still 
renowned. Amongst other things, he proves that a 
body plunged in a fluid of equal density to its own is 
entirely immersed, but remains suspended in the fluid ; 
and that a solid floating in equilibrium on the surface 

. of a liquid displaces a weight of this liquid equal to 
its own weight. It can be clearly seen that, in 
mechanics, Archimedes did not, like Aristotle, deduce 
his principles from the general laws of motion. He 
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based his theories on certain simple laws of equilibrium, 
taken as self-evident. Thus he made the science of 
equilibrium an independent science which owes nothing 
to the other branches of physics; he established 
statics. But the rigour and lucidity which he obtained 
were bought at the price of a real sacrifice of the 
generality and fecundity of the method. 

The laws which govern the equilibrium of two heavy 
bodies suspended from the arms of a lever have been 
deduced from hypotheses peculiar to this problem. 
They are of no use when there arises a case of equili- 
brium in entirely different conditions ; when analysed, 
they cannot give any indication as to the choice of 
new hypotheses. So that, when Archimedes studied 
the equilibrium of floating bodies, he was obliged to 
have recourse to principles which have no analogy 
to the requirements of the theory of the lever. 

As M. Duhem remarks: “ Although an admirable 
method of demonstration, the path followed by 
Archimedes in mechanics is not a method of invention ; 
the certainty and lucidity of his principles are largely 
due to the fact that they are gathered, so to speak, 
from the surface of phenomena and not dug out from 
the depths.”’ 2 

It seems to us that this is the reason why the 
demonstration of Archimedes is not entirely satisfactory 
even from a logical point of view, for it finally comes 
back to the disguised verification of a fact. 

Doubtless, by virtue of the principle of symmetry, 
we can logically maintain that two equal weights A 
and B suspended from two equal arms of a lever will 
be in equilibrium; but we cannot know a prion 
what will happen if we replace one of these weights 
A by two smaller weights a@ and a, which are in 
equilibrium and whose sum is equal to A. Experience 

111 Duhem, Ovigines, I, p. 11. 
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alone can inform us on this point. An example will 
show more clearly that this is so.t Let us consider 
a compound pendulum formed of a rigid rod of 
negligible weight to which are fixed a weight of 2 lbs. 
at a distance of 4 inches, and another weight of 2 lbs. 
at a distance of 8 inches (Fig. 34). 

Fic. 34. Fig. 35. 

When the pendulum is held in a horizontal position 
the moment of the force acting on it is equal to 

aX 4a+2 IS = 22. 
According to the reasoning of Archimedes, we can 

1Cf. L. Lecornu, La Mécanique, Flammarion, Paris, 1918, 

Pp. 56. 
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replace the two weights by a single weight equal to 
4 lbs. and fixed at a distance of 6 inches. The moment 
of the force acting on the pendulum in a horizontal 
position is still equal to 24, ie., the product of 6 by 4. 

Under these conditions it would seem that if we 
allow the pendulum to oscillate, we must obtain the 
same result in both cases and find that the duration 
of the oscillations is the same. But in fact it is not 
so. Why? Because the conditions of symmetry for 
a system in motion are not the same as for a system 
in equilibrium. By changing the compound pendulum 
into a simple pendulum we certainly have not changed 
the static moment of the system but we have modified 
its moment of inertia, and for this reason the times 
of oscillations can no longer be equal. 

Thus from the logical principle of symmetry one 
cannot a priori deduce consequences before making 
any experiment. It is experience alone which can 
teach us in what way this principle works in nature, 
for a mass of unknown factors may interfere and 
confuse its application just where the latter might 
rightly be expected. Concerning the lever, we know 
for example that to maintain equilibrium, it is im- 
material to hang the arrangement of two weights 
higher or lower than the weight it replaces, and to 
place this arrangement parallel or perpendicular to 
the direction of the lever. 

If, notwithstanding, the demonstration of Archi- 

1The moment of inertia I is the sum of the masses m 
multiplied by the squares of their distances y from the axis 
of suspension. The time of oscillation is then equal to 

T =2 nn / = when M represents the static moment. 

If the calculations in the chosen numerical example be 
made, it will be found that I for the compound pendulum is 
equal to 2 x 4% +2 x 8% = 160, while for the simple pendu- 
lum it is only equal to 4 x 6* = 144. 
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medes is accurate, it is solely because it is based on 
an intuitive empirical statement, namely that the 
effective power of a force at a given moment is equal 
to this force multiplied by its distance from the 
vertical axis which passes through the fulcrum 
Pd = pD (Fig. 36). 

Fie. 36. 

This relation, which is based on the moments of 
forces, was not clearly formulated until the end of 
the Middle Ages; it is equivalent, in a horizontal 
position, to the relation P) = pL; it was by this 
that Archimedes was instinctively guided. 

As we have seen, from a desire for lucidity he con- 
fined his theoretical researches to statics, that is, to 
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a very special class of phenomena ; and for this reason 
his method, in the course of time, proved less fruitful 
than the dynamical conceptions of Aristotle. 

At first sight it may seem surprising that Archimedes, 
after having invented and perfected so many ballistic 
machines, did not attempt to study their theory. 
This abstention may be accounted for by the logical 
difficulties raised by the idea of motion. The argu- 
ments of Zeno of Elea on this point had produced 
in the minds of the ancient philosophers an uneasiness 
which was never dispelled. 

For example, the space in which a body moves is 
motionless : how are we to understand the relationship 
of a moving body to something motionless? Look at 
the arrow in flight. It follows an immovable line 
which is its trajectory, and it must at each instant 
coincide with a portion of this trajectory since it 
traverses it. Now it cannot do this without itself 
coming to rest for an instant, however short, therefore 
its whole movement is a sum of instants of rest. 

To the Greek geometers it did not appear possible 
to avoid the objections raised by Zeno, and this 
perhaps was the reason that Archimedes did not 
attempt to establish the foundations of rational 
dynamics. 

4. LATER DEVELOPMENTS 

It would be a mistake to consider the works of 
Aristotle and Archimedes as isolated examples of their 
kind.1 The statics of Archimedes, in particular, by 

its subtle analysis and marvellously clever solutions, 
the interest of which is not apparent to the uneducated, 
bears wituess to a science already far advanced, and in 
no way resemble the uncertainties of a science newly 
born. Moreover history confirms this supposition, 
since it places prior to Archimedes the mechanical 

171 Duhem, Ovigines, II, p. 280 et seq. 

14 
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problems perhaps falsely attributed by tradition to 
Aristotle, and which enunciate with remarkable 
accuracy the composition of movements by the 
parallelogram of forces. If this work is not Aristotle’s, 
its distinctly peripatetic inspiration points to its being 
due to one of his immediate disciples.? 

Another tradition preserved by the Arabs attributes 
to Euclid various treatises on the lever and heavy and 
light bodies. These may not have been the work of 
Euclid, but they were certainly written by one of his 
contemporaries ; for, whilst drawing their inspiration 
from peripatetic dynamics they use an axiomatic 
method similar to that of the Elements, but much less 
elaborate than that of Archimedes.? 

If Archimedes had precursors, he assuredly had also 
followers in antiquity. Byzantine and Alexandrian 
science pursued the various paths opened up by him. 
The art of engineering, developed by him to such a high 
degree, inspired, as we have seen, the labours of 
Ctesibius, Philo of Byzantium and Hero of Alexandria. 
Pappus, on the other hand, endeavoured in theory to 
equal the demonstrations of the great Syracusan. He 
alone of all the geometers of antiquity attacked the 
problem of the inclined plane, without, however, 
succeeding in solving it correctly (Pappus, Hultsch 
edit., pp. 1032 and 1033). On the other hand, he 
discovered the two following theorems, which are 
known by his name, though sometimes called the 
theorems of Guldinus (idem, p. 652), namely: 

The volume generated by the revolution of a surface, 
bounded by a curved line, about an axis is equal to 
the product of the area of the surface and the circum- 
ference or arc of circumference described by its centre 
of gravity. 

The surface generated by a curve turning round an 

171 Duhem, Orvigines, I, p. 108. 2Tbid., p. 67. 
= 103d. aDnelaa. 
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axis is equal to the product of the perimeter of the 
curve and the circumference or portion of circumference 
described by its centre of gravity. 

The foundations which Aristotle had assigned to 
mechanics were-criticized by Joannes Philoponus, called 
the Grammarian or the Christian, because he was con- 
verted from Alexandrian Neo-platonism to Christianity 
about the year A.D. 520. In his Commentaries on the 
five later books of Aristotle’s Physics, Philoponus dis- 
putes Aristotle’s arguments against the existence of 
empty space, for “if the medium were solid, it would 
hinder the movements of bodies, which in order to move 
would be obliged to divide it ; these bodies nevertheless 
are in motion. If the medium were empty, what is 
there to prevent the flight of an arrow, a stone or any 
other thing, as long as there is an instrument for 
throwing, a projectile and space? ’”’1 Thus the air, far 
from sustaining the movement of a projectile, only 
hinders it. 

The Arabs confined themselves to accepting and 
commenting on the treatises of mechanics bequeathed 
to them by antiquity. The Western Middle Ages were 
more venturesome, The fragments received from 
Byzantium and from Islamitic science were sufficient to 
awaken their attention and fertilize their intelligence. 
From the thirteenth century, perhaps even before, the 
school of Jordanes opened up paths unknown to 
antiquity. Jordanes of Nemora, whose real name and 
nationality are unknown to us, discovered the following 
law: Ifa force can raise a certain weight to a certain 
height, it will be able to raise a weight » times greater 
to a height » times smaller. 

Another savant worthy of mention is he whom P. 
Duhem calls the forerunner of Leonardo da Vinci. We 
know nothing about him, except that he lived later - 
than Jordanes and was a man of genius. Inspired by 

1 Quoted from 13 Duhem, Systéme, I, p. 383. 
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the law discovered by Jordanes, he was able to discover 
the law of equilibrium of the bent lever, and the idea of 
moment, and also to give to the problem of the inclined 
plane a solution which was rediscovered by Stevinus in 
the sixteenth century. 

It is evident, that although the Greeks displayed 
much ingenuity in the domain of technical applications, 
they were not able, except in certain special cases, 
to explain physical and mechanical phenomena in 
conformity with their ideal of science. 



CHAPTER IV 

THE CHEMICAL AND NATURAL SCIENCES 

1. CHEMISTRY 

N the sciences which we have hitherto considered, 
observation and practice have, up to a certain 
point, guided theory. It was not the same with 

chemistry, the theories of which were closely connected 
with metaphysics and had no great influence on the 
technical processes. The first gropings of chemical 
technique are very ancient. They seem to go back toa 
prehistoric epoch, to the time when metals were first 

used for manufacturing weapons, and when certain 
alloys were perceived to be advantageous. Amongst 
these alloys, that of tin and copper was specially 
important. From the most remote antiquity Egypt 
was an important centre of the trade in tin; which in 
later times was supplied by Phcenician traders.! Other 
metals were afterwards discovered and alloyed. In 
Egypt, the method of treating them was preserved by 
tradition in the form of short and probably mysterious 
receipts whose secret was jealously guarded by the 
priests. Certain hieroglyphic signs, completed by oral 
instructions, were sufficient to ensure the transmission 
of the methods of manufacture. 

As to the Greeks, the sum of their practical know- 
ledge amounts approximately to the following : “ They 
knew how to prepare certain salts of copper, of 

1M. Delacre, Histoive de la Chimie, Gauthier-Villars, Paris, 
1920, p. 16.—J. de Morgan, L’Humanité préhistorique, Renais- 
sance du Livre, Paris, 1921, p. I19, 
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potassium and of sodium, how to render fabrics incom- — 
bustible, how to treat minerals. Some substances, like 
alum, were used for the same purposes as at the present 
time. The manufacture of pigments, which implies 
chemical reactions, was far advanced at the time of the 
great Greek painters. But it was more particularly in 
the preparation of poisons that antiquity excelled. 
Owing to the limitations of the science of the time, the 
same name was often given to very different substances. 
Thus yadxd¢ denoted either copper, or its various alloys 
with tin, zinc, lead or other metals.’’! The Romans 
merely practised, without developing, the science which 
they received from Greece and Egypt. 

Although very ancient, chemistry did not produce any 
systematic publications until relatively late. In fact 
it was in the Alexandrian period, under the Ptolemies, 

that there appeared for the first time a work sum- 
marizing the metallurgical and chemical knowledge of 
the period. This work was published under the name 
of Democritus, but its author was in reality a certain 
Bolos, who lived about 250 to 200 B.c. Inspired by 
him, there arose a series of writings, the most important 
of which is entitled Physica et Mystica by Democritus, 
which, in four books, treats of gold, silver, pearls and 
precious stones, and lastly of the manufacture of purple. 
It is probable that the first alchemistic and hermetic 
treatises also belong to this period.? 

Unfortunately we only possess fragments of all this 
literature. These, however, are sufficient to show that 
the idea of the transmutation of elements was already 
common, as also the belief that a single substance 
(prima materia) is the base of all material bodies. 

Of the manuscripts relating to chemistry the most 

1L. Laurand, Les Sciences dans l’antiquité, Picard, Paris, 
1923, p. 29.—For the terminology and composition of minerals, 
see 1 Berthelot, Introduction, pp. 228-268. 

210 Diels, Antike, p. 113. 
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important by far were discovered in a tomb in Egypt, 
almost a century ago. One is called the Leiden 
papyrus, the other the Holmiensis papyrus.1 They 
were written in the third century A.pD., but their matter 
is much more ancient and is largely a reproduction of 
the Physica et Mystica mentioned above. It is prob- 
able that the possessor of these manuscripts had 
requested that they should be buried with him at his 
death in order to avoid trouble to his heirs; for 
Diocletian, from fear of coiners of base money, had 
caused all books treating of the manufacture of gold, 
silver and precious stones to be burnt. 

The Leiden and Holmiensis papyri are of great 
importance, especially because they give exact and 
detailed receipts for the working of metals and the 
method of obtaining certain alloys (amongst others 
the asemon), and also how to manufacture imitation 
pearls, rubies and topazes. Magical and astrological 
prescriptions were added to these receipts, for metal- 
lurgical operations may be aided by propitious con- 
junctions of stars and planets. ‘‘ A metal was assigned 
to each heavenly body. To the sun, gold; to the 
moon, silver; to Mars, iron; to Saturn, lead; to 
Jupiter, electrum; to Hermes, tin; to Venus, 
copper.” ? 

It was in the fourth century A.D. that the terms 
Alchemy and Chemistry first made their appearance. 
For a long time their authorship was attributed to the 
astrologer Firmicus Maternus; but in reality these 
terms were introduced by the famous Zosimus of 
Panopolis, who lived at about the same time as Firmicus 
Maternus (A.D. 336). Zosimus derived the word 
Chemistry from the name of the Jewish prophet 
Chemes; according to Diels it is more probable that 

1 For the history of these papyri, see 1 Berthelot, Introduc- 
tion, p. 4, et seg., and 10 Diels, Antike, p. 118. 

21 Berthelot, Intvoduction, p. 77. 
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Chemistry, or better Chymistry, comes from the Greek 
word yoda (fusion).+ 

This same Zosimus traces the origin of chemical 
science back to the epoch before the Flood, when, 
according to the story of Genesis (ch. vi) afterwards 
enlarged in the Book of Enoch, the sons of God married 
the daughters of men. In order to seduce the latter, 
one of the former, the angel Asasel, revealed to them 
the secrets of the healing properties of plants and the 
beauty of artificial jewels. Hence the diabolical 
character of Chemistry. 

The writings of Zosimus certainly contain valuable 
information as to the treatment and alloying of metals, 
the fabrication of precious stones, and even describe 
interesting processes of distillation; but they are 
cumbered with gnostic and magical ideas which per- 
sisted for centuries; and these gave to alchemy the 
character of an occult science feared by the unlearned, 
because its secrets belonged rather to demons than to 
God. 

However, notwithstanding these mystical dreams, 
the researches of the Alchemists were directed by ideas 
of a philosophical and even scientific nature. 

As we have seen, the Ionians, from the dawn of 
Greek philosophy, admitted that matter is one in its 
essence, but that it can assume various forms. 
A century later, Empedocles formed the conception 

of two imponderable media, one endowed with the 
power of attraction, the other with the power of dis- 
integration. These two media constantly acted on the 
four constituent elements of matter, namely, water, 
earth, air and fire. They ceaselessly united and 
separated these elements, and in this manner worlds 
and phenomena were evolved. 

At almost the same epoch Democritus boldly postu- 
lated the existence of empty space, and established the 

t1o Diels, Antike, p. 110, 
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foundations of the atomic theory.’ Bodies are composed 
of material atoms which differ from one another only in 
magnitude, shape and weight. These atoms by com- 
bining and separating produce all sensible phenomena. 
Up to a certain point Plato combines the ideas of 

Empedocles with those of Democritus. According to 
him, mathematical facts constitute the intelligible 
basis of the world which the Demiurge desired to 
create; but in order that this world might become 
tangible and visible, it had to be brought into existence 
under the form of earth and fire. Moreover, as earth 
and fire cannot enter into direct relationship with one 
another, it was necessary to unite them by means of 
water and air in the following proportions : 4 

fire .- air — water 
air water earth 

In order that combinations may be formed between 
these constituent elements of the universe, it is neces- 
sary that these should take the form of regular poly- 
hedra; therefore the earth-element will be a cube, the 
water-element an octahedron, the air-element an 

icosahedron, and the fire-element a _ tetrahedron. 
From the fact that there exists a fifth regular poly- 
hedron, the dodecahedron (the faces of which are 
pentagonal) Plato deduced the existence of a fifth 
element also, namely, the ether. The ideas of Plato 
and particularly of Democritus resemble in many 
respects the conceptions of modern chemistry. They 
had, however, but slight influence on the development 
of the science because they evaded the methods of 
experimental verification which were in use until the 
end of the eighteenth century. 

In this domain also, the conceptions of Aristotle, 
afterwards seen to be false, had an important influence. 
Aristotle begins by opposing matter and form. The 

113 Duhem, Systeme, I, p. 30 ef seq. 
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‘prima materia ”’ is neither fire, air, water nor earth ; 
but it is capable of becoming all these elements. At 
the same time it assumes certain fundamental qualities 
which are irreducible to one another (white and black, 
cold and hot, etc.) ; the same body can successively 
receive these qualities. The task of physics and hence 
of chemistry is to determine in the first place all the 
irreducible forms which exist in nature, and then study 

the laws by which a body can successively assume all 
or part of these forms. Now experience teaches us 
that only the following properties are suitable for all 
bodies, namely heat and cold, dryness and humidity. 
These therefore are the properties which constitute 
the irreducible forms. By combining them in all 
possible ways six pairs are obtained of which two, the 
dry-damp and the cold-hot, must be eliminated as 
contradictions. 

The four pairs which remain are represented by the 
following bodies: 1 

cold-damp . ; i ; . water 
cold-dry ‘ : ; : . earth 
damp-hot : ‘ ; : . a 
dry-hot . ; : ; fire 

This conception of Aristotle is not all adapted to 
mathematical considerations, especially to a geometrical 
representation ; but it appears to take into account the 
immediate facts of existence, and was therefore adopted 
in the Middle Ages by the Arabian philosophers. 

These latter, however, were gradually led to modify 

the classification of Aristotle which does not take 
into account the exceptional importance of metals. 
According to them, mercury symbolizes metal and 
must form the basis of all metals. Sulphur constitutes 
another most important property, combustibility; the 

1'W. Ostwald, L’ Evolution dune science, la Chimie, Flam- 
marion, Paris, 1909, p. 6. 
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earth represents non-metallic minerals, salt the solu- 
bility in water and solvent action on other bodies. 
These ideas relate to ideal elements yet to be discovered, 
and not to mercury, sulphur, earth and salt as known to 
us through our senses. The discovery of these elements 
would enable the transmutation of substances to be 
effected, that is to say the transfer of a property from 
one body to another. In particular it would be possible 
‘to transmute any metal into gold. Only, the trans- 
mutation must be effected in a certain order. 

As, in the eyes of modern chemistry, an element has 
an affinity for certain known elements, so the alchemists 
held the opinion that, although every body can be 
transmuted into something else, this can only be done 
by following an invariable order. For example, if F 
represents iron and O gold, in order to transmute 
F into O it is necessary to give to F the property G, 
then by means of G the property H, andso on up to O. 
If one of the links be omitted, the transmutation will 
not take place. Hence the famous symbol of the 
serpent biting its tail. 

This investigation of the characteristic circular order 
of the transfer of the properties of bodies could not 
reach its goal, but it had the result of perfecting 
metallurgy, the manufacture of glass and the remedies 
employed in medicine, and discovered, by means of 
distillation, several essences or spirits such as 
turpentine. 

The history of chemistry is of a strange character. 
From the fifth century B.c. Democritus had laid its 
theoretical foundations. However, these were not 
verified until after the work of Lavoisier at the end of 
the eighteenth century. Until that time, practical 
research gave rise to conceptions which, while doubtless 
erroneous, seemed to be more in agreement with the 
data directly furnished by experience. 
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2. THE MEDICAL AND NATURAL SCIENCES 

In the first part of this book we have shown the 
progressive development of medical science, and noted 
the remarkable discoveries which were duetoit. It is 
sufficient here to recall briefly the spirit and methods 
which characterized these discoveries. 

Like other primitive peoples, the Egyptians and 
Chaldeans considered disease either as a punishment 
sent by a Divinity, the work of malevolent spirits, or 
the consequence of spells wrought by man. In every 
case the agent of the disease was a spirit which entered 
the body and destroyed the tissues. 

Therefore to obtain healing, the intervention of both 
the priest and the physician was necessary. The 
former had to appease the Divinity by sacrifices and 
prayers. The latter had a twofold task. He had to 
drive away the spirit who caused the disease, by 
exorcisms and incantations on the one hand, and on 
the other hand by drugs which were feared by the spirit 
and at the same time built up the tissues of the patient. 
The choice of these drugs was determined more often 
by a fantastic association of ideas than by specific 
experience. ‘“‘ The euphrasia was supposed to heal 
diseases of the eye because its corolla has a black mark 
resembling the pupil of the eye, whilst the red tint of 
hematite seemed to point it out as a means of stopping 
hemorrhage. The Egyptians believed that the blood 
of black animals would prevent the hair from turning 
white, and even to-day in Styria, as formerly in India, 
Greece and Italy, jaundice is banished into the bodies 
of yellow birds.” } 

Greek medicine from the first took up a different 
position: The Iliad, speaking of the care of the 
wounded, makes no mention of superstitious practices. 
The wounds must be dressed with special balms and the 
warriors revived with wine, barley and cheese. 

114 Gomperz, Penseurs, I, p. 294. 
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Doubtless there existed in Greece, side by side with 
the scientific and lay medicine, a medical art practised 
by the priests and thaumaturgists, in which incanta- 
tions played a preponderant part. But this fact did 
not prevent the lay medicine from following an entirely 
different direction. In accordance with the scientific 
ideal glimpsed by the Greek philosophers, it considered 
that all disease, including epilepsy, had its origin in a 
natural cause. The primary consideration was there- 
fore to know the exact structure of the human body, and 
it was to this that Greek anatomy applied itself with 
conspicuous success, especially during the Alexandrian 
period. In the study and the treatment of diseases, 
Greek medicine displayed a no less remarkable skill. 
It held that the health of the body consisted in a 
state of equilibrium maintained by food and exercise. 
“The fundamental condition of health is to observe 
a just proportion between work and food, by taking into 
account the constitution of the individual, differences 
of age, season, climate, etc. A man would be protected 
from all disease if one of these factors—the individual 
constitution—could be ascertained beforehand by the 
doctor.” 1 We have seen how Hippocrates tried by 
means of his humoral theory to define the conditions 
of right and wrong proportions which constitute health 
and sickness. 

Whatever explanations might be suggested, Greek 
medicine was as a rule distrustful of philosophic 
opinions which could not be directly verified by experi- 
ence. It only accepted hypotheses which were founded 
on and verified by facts. It had a very clear per- 
ception of the individual and general characteristics of 
diseases. Hence it succeeded in noting the symptoms 
and courses of most of them with remarkable accuracy, 
and in ascertaining causes as wellas remedies. Surgical 
art was likewise systematically practised, and brought 

174 Gomperz, Penseurs, I, p. 304. 
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to a high degree of perfection thanks to a comprehen- 
sive set of implements, as is shown by the surgical 
instruments discovered at Pompeii. 

The credit of having established the scientific bases 
of the natural sciences belongs to Aristotle and his 
disciples. It has been mentioned that Aristotle rescued 
zoology from oblivion. This, however, as Gomperz 
points out, is to honour him both too much and too 
little, for it is attributing to him an almost superhuman 
work and at the same time a mass of errors for which he 
isnot responsible.? Aristotle had predecessors amongst 
the philosophers and especially amongst the physicians, 
whose opinions he often quotes either with approval 
or disapproval. However, although he profited by the 
work of his predecessors, he made more use of the 
observations he himself was able to make, and the 
information he methodically gleaned. 

In the three great works which he published 
(Historia animalium; De pfartibus animahum; De 
generatione animalium) he interprets the facts observed 
according to finalistic views, and by considering 
mechanical causes as aids to final causes. According 
to him, the life of nature is divided into two spheres, 
in one of which necessity reigns, whilst the other is 
ruled by tendencies and by finality (De generatione 
animalium, 759 b).2 Life is motion. Now all motion 
implies both a form which moves and a matter which 
is moved. The form is the soul, the matter is the 
body. The soul is the permanent force which moves the 
body and determines its structure. But as form only 
gradually overcomes the resistance of matter, the 
psychic life comprises three degrees: nutrition, sensa- 

1410 Diels, Antike, p. 23. 
*14 Gomperz, Penseurs, III, p. 150.—F. Houssay, Nature et 

Sciences naturelles, Flammarion, Paris, p. 62.—22a Robin, 
La Pensée grecque, p. 351 et seq. 
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tion, and intelligence.t Having established these 
foundations, Aristotle explains the anatomical structure 
and constitution of living beings, in conformity with his 
doctrine, by final causes. This kind of explanation 
presents difficulties which Aristotle was not always able 
to avoid. Thus he attributed baldness to the coldness 
of the brain, and the timidity of certain animals to the 
size of their hearts. But asa rule teleological principles 
led him to happy results. 

In his classification of animals, Aristotle had the 
great merit of abandoning the dichotomous division 
praised by Plato, which was based solely on the presence 
or absence of some particular feature (winged and wing- 
less, for example).? According to this method of division 
a species is composed a priori of two sub-species, which 
in their turn are each divided into two, and soon. A 
classification of this kind is not organic, because it 
forcibly separates beings which are in reality closely 
allied, for instance, the winged ants (males and females) 
from the wingless (workers), the male fire-fly which has 
wings from the female which has none. 

Aristotle also considered that, in classification, 
anatomical characteristics should outweigh physio- 
logical characteristics, which depend on the mode of 
existence and on adaptation. He excelled in discover- 
ing organic correlations and reciprocal dependences. 
He showed how the removal of a small organ can bring 
about a change in the whole body ; how, for example, 
in eunuchs there is a transition from the masculine to 
the feminine. He formulated the law of the balance of 
organs. ‘‘ Everywhere nature restores to one part what 
she takes away from another. ... She cannot make 
the same expenditure in two directions... . It is 

impossible for her to expend the same material in 

1E, Boutroux, Etudes d’histoive de la philosophie, Alcan, 

Paris, 1897, p. F55. 
214 Gomperz, Penseurs, III, p. 163. 
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several places at the same time” (De gener. anim., 
750-3).!_ Aristotle also affirmed the subordination and 
the hierarchy of beings in the animal scale. The organic 
individuality becomes stronger as we pass from inferior 
to superior beings. Only, to Aristotle, this hierarchy 
was not the result of a progressive and continuous 
evolution, as Lamarck and Darwin were to maintain. 
It remains the same for all time, since different species, 
even those most akin, cannot form a fertile and lasting 
union. 

Connected with the anatomical generalizations there 
are physiological generalizations of which Alcmaeon, 
Empedocles, and the followers of Hippocrates had al- 
ready set the example. In this domain, Aristotle very 
clearly established the modern distinction between 
organs and tissues. Starting from this point, he dis- 
covered remarkable analogies of the tissues, between 
hairs, feathers and the prickles of the hedgehog ; and 
of the organs, between the arms of a man and the wings 
of a bird, and between the hands of a man and the claws 
of a lobster or the trunk of an elephant. 

Regarding the assimilation of nourishment by the 
body, Aristotle held the opinion that foods are cooked 
by the stomach and are transformed into phlegm or 
blood according to their degree of cooking. 

Finally, Aristotle opened up several new and fruitful 
paths in embryology, and his observations on terato- 
logical cases have not lost their interest. The disciples 
and successors of Aristotle, although they extended the 
field of the discoveries made by their master, added 
nothing to the principles and methods by which he was 
guided. However, in the vegetable kingdom Theo- 
phrastus distinguished the cotyledons (the food leaves 
contained in the seed) from the ordinary leaves pro- 
duced on the stem; and recognized the difference of 
internal structure between palms and other trees. 

1 Quoted from 14 Gomperz, Penseurs, III, p. 168. 
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Phanias separated flowerless plants such as ferns, 
mosses and fungi from flowering plants ; and it was only 
eighteen centuries later that this important distinction 
was revived. 

1G. Bonnier, Le monde végétal, Flammarion, Paris, 1907, 
p- 38. 
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HE chosen daughter of Zeus, the goddess of 
the wisdom which inspired war, science and 
art, Pallas Athene, above all the divinities, 

was honoured and reverenced by the Athenians; the 
temple of the Parthenon on the Acropolis symbolizes, 
even at the present time, the genius of the Greek nation 
in all its purity. We recall the beautiful prayer of 
Renan inspired by the sight of this temple: “O 
nobility, O beauty simple and true, Goddess whose cult 
symbolizes reason and wisdom, thou, whose temple is an 
eternal lesson of justice and sincerity, late I come to the 
threshold of thy mysteries. To find thee has needed 
an infinity of searching. The initiation which thou 
didst confer on the newly-born Athenian by a smile, I 
have won by dint of reflection, at the cost of long 
struggles.” 

This homage rendered to the tutelary goddess 
of Athens expresses in moving words the reverence 
and gratitude which are inspired by the tremendous 
labour of civilization accomplished by Ancient Greece. 
Merely a few centuries have sufficed her, not only for 
the realization of an incomparable architecture and 
statuary, but also for the creation of all the known types 
of literature, and for the establishment of the lasting 
foundations of most of the sciences. Apparently it was 
almost without efforts and without gropings in the dark 
that these conquests were made, in consequence of, as 
Renan says, the spontaneous initiation granted by 
reason to every Greek at his birth. In particular, the 

question arises, How did Ancient Greece succeed in 
216 
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breaking the mental habits of a thousand years, and in 
forming a true conception of scientific relationships ? 

Compared with the empirical and fragmentary know- 
ledge which the peoples of the East had laboriously 
gathered during long centuries, Greek science con- 
stitutes a veritable miracle. Here the human mind 
for the first time conceived of the possibility of estab- 
lishing a limited number of principles, and of deducing 
from these a number of truths which are their rigorous 
consequence. 

Beyond the fugitive data of sensation, the Greeks 

sought for the relationships, which impress the mind 
as being founded on fact and reason. They were the 
first to make known the connection of thought and 
language, and to notice the difference between reason- 
ing and the facts on which it is based. 

This work, begun by Parmenides and the sophists, 
was carried on by Socrates and Plato, and completed 
by Aristotle. Parmenides caught a glimpse of a realm 
of truth unshaken by changing opinions ; the sophists 
laid the foundations of grammar ; Socrates established 
the relationship which exists between the general idea 
and particular ideas contained in it. Plato dis- 
tinguished two dialectic processes in the realm of 
thought, the one which proceeds from hypotheses to 
consequences, the other which starting from hypotheses 
goes back to the principles which justify them. Finally, 
Aristotle, in the imposing edifice of his logic, co-ordinates 
the results obtained by his predecessors. In no other 
civilization and amongst no other nation do we find 
any similar systematic and rational analysis of human 
thought. 

Through this analysis the Greeks were led to visualize 
in every science a matter and a form. The former 
varies with the object peculiar tq each science; the 
latter is found in every system of reasoned knowledge. 
By the form, a consequence is connected to its law 
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in a necessary manner in the same way as a particular 

fact toitscause. The objects of science can be classified, 
as regards their matter, in two groups, according as they 
arise directly or not from sensible observation. 
When the object is not directly related to sensation, 

as is the case with mathematical facts, the science can 
be rigorously constituted, because there are a number 
of primary conceptions from which consequences can be 
inferred by means of reasoned deduction. For this it 
is necessary that these primary conceptions should be 
as logical and as few as possible. The mind is then 
master both of the form and of the matter of the 
science, since the latter contains no element foreign to 
reason. 

The sciences which are based upon sensible observa- 
tion show, like mathematics, a disagreement between 
form and matter, between a collection of data and a 
chain of reasoning based on these data. In this case, 
however, the matter is composed of the individual 
elements revealed to us by sensation, which can be 
classified according to the genus, species, etc., to which 
they belong. In order to make this classification it is 
necessary in the first place to have recourse to analogical 
reasoning founded on observation, but, when the classi- 
fication has once been effected, a deductive syllogism 
enables each thing to be assigned its place in the 
universe. 

To the Greeks, there was no radical opposition 
between the inductive and the deductive syllogism. 
When, having a knowledge of the science, we reason by 
deduction, we are reproducing the order of nature which 
creates individuals as a function of the genus and species 
to which they belong. On the other hand, in order to 
acquire a knowledge of the science we must start from 
individual observations and have recourse to inductive 
syllogism. ‘Men, horses and mules are long-lived. 
Now men, horses and mules are animals which have no 
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gall. Therefore animals without gall are long-lived.” 
The opposition between induction and deduction, which 
has been pointed out in modern times, is not, according 
to Aristotelianism, founded upon nature. The unity 
of the two perspectives, which, from the standpoint of 
critical reflection, appear incompatible, is, according to 
Aristotle, ensured by the inversion of the order of pro- 
gressively acquired knowledge and the order of nature, 
““ between order as it appears to us and order in itself.” 
According to a remarkable saying of the Nicomachean 
Ethics (1112 b 23), “To éoyatoy éy th dvaddoet, medtov 
éy tH yevéoet.” 1 The aim of the sciences which are 
based on sensible observation is thus to discover the 
classification and natural hierarchies of phenomena in 
relation to one another. Their main work is to group 
extensively and comprehensively the conceptions to 
which these phenomena correspond. The physical 
causality which justifies this grouping is imbued with 
finality and cannot admit absolute quantitative 
relations, except in rare cases. 

For the Greeks there existed a cleft between the 
mathematical sciences and the physical or natural 
sciences, and in their opinion this cleft could never be 
closed up. The reason appears to be as follows. 

The sciences whose data are exclusively provided by 
sensation are concerned with bodies which, with the 
exception of the heavenly bodies, are subject to birth, 
death, and compulsory motion. These bodies, besides, 
obey a cause which displays its effects in time by virtue 
of the finality inherent in nature. As individuals they 
never realize, except imperfectly, the form towards 

which they aspire. Consequently, between form and 

matter, there cannot exist an adequate relation, 

mathematically measurable, and from a logical point 

of view there are always obscurities. Doubtless 

11. Brunschvicg, Expérience humaine et causalité, p. 157. 
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nature tends to be penetrated by rationality, but this 
penetration is never complete because of the resistance 
which matter offers to form, and this is why individual 
beings are always imperfect examples of form. The 
numerical and spatial relations as conceived by arith- 
metic and geometry have a totally different character, 
for these relations are eternal, independent of time, 
of physical place and of circumstances. If, as Aristotle 
thought, mathematical entities have been gradually 
disentangled by abstraction from the sensible world, 
having once been obtained by this process, they appear 
in a perfect and immutable form. This being so, 
individual mathematical entities are an exact reproduc- 
tion of the genus and species to which they belong. 
Every isosceles triangle, whether small or large, 
possesses completely and perfectly all the properties 
of the isosceles triangle, in this sense, that, having two 
sides equal, it necessarily has two angles equal. Mathe- 
matical entities attain their perfect form without any 
progression in time. The abstract relation of which 
they are constituted is eternal, or rather it is a relation, 
irrespective of time, between laws and consequences, 
in which the efficient cause and the final cause are 
merged by an indivisible action of the mind. 

This fact determines the nature of mathematical 
conceptions and demonstrations within the following 
limits : 

The primary propositions (axioms, definitions, postu- 
lates) must avoid making any appeal to obscure ideas 
of the sensible intuition such as indefinite dichotomous 
divisibility and the relation of motion to space. 

On the other hand, in geometrical demonstration it 
is most necessary to use static methods, and to consider 
as foreign to science the constructions which result 
from the meeting of two lines in motion. 

In the same way, in dealing with integration, the 
passage to the limit cannot be directly effected. It can 
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only be demonstrated that a curvilinear area is con- 
tained between two rectilinear areas whose surfaces 
differ by a quantity as small as desired. A circle, 
for example, is contained between the increasing 
surface of an inscribed polygon and the decreasing 
surface of a circumscribed polygon. 

Because of their distinctive characteristics, it was the 
mathematical sciences alone which could realize the 
Greek ideal of axiomatic science, namely a number of 
logical principles whose rigorous consequences are 
ensured by reasoned deduction. 

The physical and astronomical sciences, in as far as 
they have attempted to realize this ideal, have been 
obliged to limit the field of their investigations. 

Astronomy, for instance, extricated itself from 
meteorology, with which it was at first mingled, and 
attempted, with the Pythagoreans, to unite physics and 
mathematics. This effort having but imperfectly 
succeeded, there arose a division between the mechanics 
of the eternal celestial bodies and that of the terrestrial 
bodies subject to birth and death. Astronomy then 
attributed to the celestial bodies a circular motion, 
and limited its ambition to a geometrical representation 
of their movement in the heavens. It mattered little 
whether this representation was physically realizable ; 
it was sufficient that it accounted for the appearances 
of the celestial phenomena. This being so, the theory 
of axioms is satisfied, because the circular movement 

is the only regular and periodic movement which can be 
logically conceived for a body in space. In fact, if this 
body did not move circularly, either it would set off 
at a tangent and go away into infinity, which is 
impossible in a finite universe ; or it would fail to the 
centre of the universe and everything would be motion- 
less, which is contrary to appearances. 

Similar observations apply to mechanics. Being 

desirous of constituting this science according to an 
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axiomatic type similar to that which characterizes the 
Elements of Euclid, Archimedes confined his studies 
to statics. In doing this, he thought to find in a purely 
logical principle—the principle of symmetry—a suffi- 
cient foundation for the law of the lever and that of 
the equilibrium of bodies. If he did not attempt to 
found dynamics, it was probably for fear of being 
obliged to have recourse to an obscure sensible intuition. 
The study of a body in motion implies notions of con- 
tinuity and indefinite divisibility in time and space, 
notions which are always in some degree irreconcilable 
with logic. 

Aristotle was more venturesome ; but his dynamic 
theses are rendered obscure by a notion of force which is 
borrowed from biological conceptions. 

Greek science directed along these lines was bound to 
come to a standstill. 

In the first place, the field assigned to mathematics 
is too restrained and too arbitrary, since the curves 

called mechanical are excluded from it. Then, within 
these limits, the demonstrations become more and 
more complicated from fear of making a direct appeal 
to infinity. Doubtless the use of infinity offers advan- 
tages which are inappreciable from the standpoint of 
demonstrative rigour, but it is difficult and incon- 
venient to manipulate, and it lacks generality and 
necessitates, in its progressive application, more and 
more complicated geometrical constructions. 

This mistrust of infinity, already so great as concerns 
integration, appears again and in a more marked degree 
in questions relating to geometrical space. The Greeks 
refused to think of this as infinite. Consequently 
they never imagined as possible the geometrical exis- 
tence of points and straight lines removed to infinity. 
We know how much these ideas have vivified modern 
geometry ; they have rendered possible generalizations 
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and simplifications of which the Ancients had no 
conception. 

In a quite different direction the physical and 
natural sciences were likewise arrested in their develop- 
ment. For the conception of finality, upon which 
they were based by Aristotle, clashes with a difficulty 
which is clearly emphasized by M. Brunschvicg. The 
Aristotelian formula leaves the mind undecided between 
two contrary tendencies: immanence and transcen- 
dence. ‘‘ On the one hand, beings develop by realizing 
the proper form inherent to them, which is themselves 
in what is intimate and specific in their reality. On 
the other hand, this realization implies nevertheless 
in each being an aspiration to pass beyond its actual 
state, which cannot be wholly explained except by 
an attraction towards a higher and in some measure 
exterior end. The world of spontaneous living beings 
forms a hierachy turned towards God and of which 
God Himself, although He does not turn towards the 
world, is the origin, the prime mover. The doctrine 
of causation, as it was elaborated by the Aristotelians, 
oscillates between two tendencies which, if singly 
developed, would lead to two antagonistic visions of 
God and the universe.” ? 

The Greek conception of the science of axioms is 
certainly very remarkable, for it accustoms the mind 
to be very exacting as regards proofs and demon- 
strations. It evidences, however, an exaggerated 
prudence and timidity. It not only hampered the 
progress of mathematics, but it showed itself to be 
impracticable in the domain of physical science, for 
the foundations which it specifies for scientific research 
in this domain are too narrow to support the ideas 
deduced from experience, such as those of motion, 

continuity and indefinite divisibility. 
Now these notions inevitably appear when one comes 

1 Expérience humaine et causalité physique, p. 158, Alcan, 1922. 
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to closer grips with truth, hence an important problem 
presents itself : How did the savants of the Renaissance 
succeed in filling up the gap which, to the Greek mind, 
existed between physics and mathematics? How did 
they succeed in reconciling the requirements of the 
Greek theory of axioms with the no less irresistible 
data of experience. 

This question may be answered in a few words as 
follows. As we have seen, Greek science had two 
requirements : 

1. A rigorous chain of propositions ; 
2. A collection of ideas which serves as the basis of 

this chain of reasoning and whose logical truth is 
convincing to the mind. 

The scientists of the Renaissance maintained the 
first of these two requirements in its integrity, but 
they partially modified the second. 

In every science the connection between proposi- 
tions must be rigorous, there can be no dispute on this 
point. 

However, the primary notions (axioms, definitions) 
which form the basis of the reasoned deduction are 
not necessarily logically clear; a constant verification 
by experience is sufficient to make them valid. We 
do not know, for instance, what motion is in itself, 
but if we can decompose it into certain measurable 
elements (time, space), and if this decomposition is 
useful and accounts for observed facts, we can include 
it in our primary notions. 
By proceeding in this fashion the scientists of the 

Renaissance succeeded in constituting a science which 
was both rational and experimental. The aim which 
they pursued more or less consciously was to make the 
mathematical conceptions less rigid so as to adapt 
them to the interpretation of mechanical and physical 
facts ; and to create a type of law which, whilst allow- 
ing of rigorous deductions, expresses the real con- 
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nections of phenomena. The task was immense, and 
in order to accomplish it successfully it was necessary 
to surmount difficulties which appeared insoluble. 

These difficulties having been overcome, it might 
have been believed that the way was definitely open 
and that it was only necessary to advance along it 
without fear of meeting with insurmountable obstacles. 
As a matter of fact, until the beginning of the twentieth 
century, the conception of scientific law, formed by 
the scientists of the Renaissance, was not seriously 
shaken. According to this conception, there exist, at 
the base of all science, rational and experimental laws 
which having once been discovered are eternally true 
and incapable of modification. Hence, it is only 
through the more and more extended application of 
these laws that science in all its branches will make 
progress. 
We know how the theory of relativity enunciated 

by Einstein and upheld by Langevin has shaken this 
conception and put in check certain postulates of the 
Newtonian kinematics. It is a curious fact that the 
partial abandonment of the conceptions formulated 
in the sixteenth and seventeenth centuries marks at 
the same time a return to many of the opinions held 
by Greek science in antiquity ; this return is all the 
more significant because it was unpremeditated. It 
is beyond question that analogies, both as regards 
hypotheses and methods, can be found between the 
physics of relativity and the cosmology of the ancient 
Greeks. 

The first philosophers of Ionia, for instance, did not 
distinguish between an empty space which would be 
self-existent, and a fluid substance (air, water or fire) 
which would accidentally fill it. In their eyes there 
was no separation between the physical properties of 
space and space itself. In the physics of relativity the 
same thing occurs in a form, needless to say, infinitely 
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more complex and more justified. There are gravita- 
tional and electromagnetic properties which confer on 
space, in every region, its geometrical qualities (curva- 
ture, possible kinds of triangles, etc.). 

This being so, there cannot be a universal system 
of reference, granted once for all, to which the study 
of a group of localized phenomena, in any part what- 
ever of the universe, can be related. The system of 
reference must in every case be intrinsic to this group 
of phenomena, which are then studied by methods 
necessitating the use of tensorial calculus and absolute 
differential calculus. As G. Juvet points out, “ the 
characteristic feature of these methods arises from 
the fact that they enable a geometrical entity to be 
studied from a purely intrinsic point of view. The 
Greeks never studied their geometry in any other way, 
when they were searching for the properties of a figure, 
they always examined the figure itself, considered by 
itself and taken independently of any system of 
reference.’ 1 It is evident that in Greek geometry, 
as in the algorithm of relativity, the relations of a 
figure are sufficient in themselves, and although they 
may be studied by means of a method and by universal 
formule, it is not necessary, as in Cartesian geometry, 
to relate them to an exterior system of co-ordinates. 
We know, besides, that the universe of the physics 

of relativity, while lending itself to questions of 
infinity, remains finite in its dimensions by virtue of 
its curvature. Now, as we have seen, the hypothesis 
of finiteness is characteristic of Greek astronomy. As 
we have pointed out, Empedocles expressed an idea 
concerning the universe, considered as finite, which 
recalls that of phantom stars; he declared in fact 
that the sun has no real existence, that it is formed by 
a simple concentration of luminous rays which are 

1G, Juvet, Introduction au calcul tensoriel, A. Blanchard, 
Paris, 1922. 
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eo on the earth and then stopped by the celestial 
vault. 

Another no less interesting analogy to be noted is 
the following: The so-called theorem of Pythagoras 
is at the base of the earliest speculations of Greek 
geometry ; it was this which gave rise to the problem 
of incommensurables and indirectly to the dialectic 
of Zeno. Now this dialectic is chiefly concerned with 
the following problem ; space, according to the Greeks, 
is an objective reality which is postulated as motionless. 
How then is it possible to conceive the relation between 
a moving object such as an arrow and motionless 
space ? 

The difficulty which gave birth to the physics of 
relativity, and which the Michelson-Morley experiment 
has brought fully into light, is quite analogous. A 
source of light, according as it is motionless or moving, 
ought to behave differently in relation to the ether 
supposed to be motionless. But as a matter of fact 
this is not so. How is this to be explained? Here 
comes in the conception of a spatial-temporal interval 
and the quadratic expression 

ds® = dx,? + dx? + dx," + dx,?, 

which is only a generalized form of the theorem of 
Pythagoras. 

Without investigating the metaphysical range and 
practical use of this fusion of space and time, the 
important fact remains that the physics of relativity, 
considered theoretically, is a remarkable attempt to 
constitiite a theory of axioms comparable to that of 
Euclid. Only this attempt does not aim at establish- 
ing the domain of a mathematics which is separated 
from reality ; it tends to unite in one whole the geo- 
metrical, mechanical and physical properties of the 
universe. Evidently, as Winter points out, such a 
science of axioms cannot pretend to create logically 
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and a priori the real world apart from experience ; 
it can only analyse, that is to say elaborate, the group 
of axioms necessary and sufficient to explain real 
phenomena.t The axiomatic analysis as thus under- 
stood seeks to substitute clear and distinct ideas for 
intuitive, experimental and often confused notions. 
It is thereby carrying on not only the work of Descartes 
but also that of Greek science. 

Hence we are forced to the following conclusion : 
the physics of relativity in returning to the immediate 
data of sensible experience seeks to reduce them to 
axioms, and for this reason it comes into line with the 

realistic and logical tendencies of the Greek thinkers 
of antiquity. 

1 Revue de Métaphysique et de Morale, ‘‘The Theorem of 
Pythagoras,” p. 23, year 1923. 
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